Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Molecular evidence for mid-Pleistocene divergence of populations of three freshwater amphipod species (Talitroidea : Chiltoniidae) on Kangaroo Island, South Australia, with a new spring-associated genus and species

Rachael A. King A B D and Remko Leys A B C
+ Author Affiliations
- Author Affiliations

A South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

B Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

C School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia.

D Corresponding author. Email: Rachael.King@samuseum.sa.gov.au

Australian Journal of Zoology 62(2) 137-156 https://doi.org/10.1071/ZO13099
Submitted: 21 November 2013  Accepted: 3 February 2014   Published: 19 June 2014

Abstract

Recent molecular and morphological analyses have shown that chiltoniid amphipods, once thought to be a relictual group, are a diverse and speciose family of Australian freshwater amphipods. As part of a larger examination of the family, chiltoniids from Kangaroo Island in South Australia were collected and analysed using molecular (COI and 28S) and morphological methods in order to understand species distributional patterns and relationships. Kartachiltonia moodyi gen. nov., sp. nov., a spring-associated species endemic to the island, was discovered and populations of three additional mainland species (Austrochiltonia australis, A. dalhousiensis and A. subtenuis) were examined. The island populations of A. australis, A. dalhousiensis and A. subtenuis were found to form natural groups with differing haplotype coalescence times dating from the Early to Mid-Pleistocene. Numerous cycles of regional climate change throughout the Pleistocene are likely to have driven speciation in chiltoniid amphipods in southern Australia and the presence of multiple chiltoniid species at Kangaroo Island indicates that it exists at a likely convergence of species distribution patterns. Three possible hypotheses to explain the evolution and diversity of chiltoniids in southern Australia are discussed as are evidence for potential introduction and long-distance dispersal events.

Additional keywords: Amphipoda, australis, Austrochiltonia, biogeography, dalhousiensis, dispersal, groundwater, Kartachiltonia, morphology, mtDNA, subtenuis.


References

Austin, A. D., Fisher, R. H., Harvey, M. S., Hirst, D. B., Locket, N. A., Madden, C. P., Reay, F., and Zeidler, W. (2002). Terrestrial and freshwater invertebrates. In ‘Natural History of Kangaroo Island’. 2nd edn. (Eds M. Davies, C. R. Twidale and M. J. Tyler.) pp. 123–141. (Royal Society of South Australia: Adelaide.)

Barnard, J. L. (1972). The marine fauna of New Zealand: algae-living littoral Gammaridea (Crustacea Amphipoda). Memoirs of the New Zealand Oceanographic Institute 62, 1–216.

Barnard, J. L., and Barnard, C. M. (1983). ‘Freshwater Amphipoda of the World. I. Evolutionary Patterns. II. Handbook and Bibliography.’ (Hayfield Associates: Mt Vernon, VA.)

Barnard, J. L., and Williams, W. D. (1995). The taxonomy of Amphipoda (Crustacea) from Australian fresh waters: Part 2. Records of the Australian Museum 47, 161–201.
The taxonomy of Amphipoda (Crustacea) from Australian fresh waters: Part 2.Crossref | GoogleScholarGoogle Scholar |

Belperio, A. P., and Flint, R. B. (1999). Geomorphology and geology. In ‘A Biological Survey of Kangaroo Island South Australia’. (Eds A. C. Robinson and D. M. Armstrong.) pp. 19–31. (Endeavour Press.)

Bradbury, J. H., and Eberhard, S. (2000). A new stygobiont melitid amphipod from the Nullarbor Plain. Records of the Western Australian Museum 20, 39–50.

Bradbury, J. H., and Williams, W. D. (1997). The amphipod (Crustacea) stygofauna of Australia: description of new taxa (Melitidae, Neoniphargidae, Paramelitidae), and a synopsis of known species. Records of the Australian Museum 49, 249–341.
The amphipod (Crustacea) stygofauna of Australia: description of new taxa (Melitidae, Neoniphargidae, Paramelitidae), and a synopsis of known species.Crossref | GoogleScholarGoogle Scholar |

Brower, A. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1KrsLw%3D&md5=070f2740ec407cc79ca603b62aff29abCAS | 8022810PubMed |

Byrne, M. (2008). Evidence for multiple refugia at different timescales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews 27, 2576–2585.
Evidence for multiple refugia at different timescales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S. J. B., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=be4ed4521bf1145ad0d36ac29682e04eCAS | 18761619PubMed |

Charalambidou, I., and Santamaría, L. (2002). Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologica 23, 165–176.
Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence.Crossref | GoogleScholarGoogle Scholar |

Chilton, C. (1898). A new freshwater amphipod from New Zealand. Annals and Magazine of Natural History: Series 7 1, 423–426.
A new freshwater amphipod from New Zealand.Crossref | GoogleScholarGoogle Scholar |

Chilton, C. (1922). A new isopod from central Australia belonging to the Phreatoicidae. Transactions of the Royal Society of South Australia 46, 23–33.

Chomczynski, P., Mackey, K., Drews, R., and Wilfinger, W. (1997). DNAzol: a reagent for the rapid isolation of genomic DNA. BioTechniques 22, 550–553.
| 1:CAS:528:DyaK2sXhvVajs78%3D&md5=92c172807a396ddfb26b23d49dea735aCAS | 9067036PubMed |

Cook, B. D., Baker, A. M., Page, T. J., Grant, S. C., Fawcett, J. H., Hurwood, D. A., and Hughes, J. M. (2006). Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification. Molecular Ecology 15, 1083–1093.
Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslWms74%3D&md5=ab1c19943f830c8dbaa6e264e9faa24bCAS | 16599968PubMed |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W.F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=e6fc0ee5aa3d4494098bd39ca811a3f1CAS |

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Davis, J., Pavlova, A., Thompson, R., and Sunnucks, P. (2013). Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19, 1970–1984.
Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar | 23526791PubMed |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Edwards, D. L., Roberts, J. D., and Keogh, J. S. (2007). Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology 16, 2782–2796.
Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog.Crossref | GoogleScholarGoogle Scholar | 17594447PubMed |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2010). Evolution and maintenance of divergent lineages in an endangered freshwater fish, Macquaria australasica. Conservation Genetics 11, 921–934.
Evolution and maintenance of divergent lineages in an endangered freshwater fish, Macquaria australasica.Crossref | GoogleScholarGoogle Scholar |

Fensham, R. J., Ponder, W. F., and Fairfax, R. J. (2010). Recovery plan for the community of native species dependent on natural discharge of groundwater from the Great Artesian Basin. Report to Department of the Environment, Water, Heritage and the Arts, Canberra. Queensland Department of Environment and Resource Management, Brisbane.

Fensham, R. J., Silcock, J. L., Kerezsy, A., and Ponder, W. (2011). Four desert waters: setting arid zone wetland conservation priorities through understanding patterns of endemism. Biological Conservation 144, 2459–2467.
Four desert waters: setting arid zone wetland conservation priorities through understanding patterns of endemism.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=64874205a2734610b194abfa9da78e6dCAS | 7881515PubMed |

Frisch, D., Green, A. J., and Figuerola, J. (2007). High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences 69, 568–574.
High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds.Crossref | GoogleScholarGoogle Scholar |

Gillespie, J. J., Johnson, J. S., Cannone, J. J., and Gutell, R. R. (2006). Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization and retrotransposable elements. Insect Molecular Biology 15, 657–686.
Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization and retrotransposable elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqsLvL&md5=8ed7b5629d2c137bb928fdfeb085528dCAS | 17069639PubMed |

Green, A. J., Figuerola, J., and Sánchez, M. (2002). Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecologica 23, 177–189.
Implications of waterbird ecology for the dispersal of aquatic organisms.Crossref | GoogleScholarGoogle Scholar |

Gross, G. F., Lee, D. C., and Zeidler, W. (1979). Invertebrates. In ‘Natural History of Kangaroo Island’. (Eds M. J. Tyler, C. R. Twidale and J. K. Ling.) pp. 129–137. (Royal Society of South Australia: Adelaide.)

Guzik, M. T., Adams, M. A., Murphy, N. P., Cooper, S. J. B., and Austin, A. D. (2012). Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes). PLoS ONE 7, e37642.
Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyrs7%2FF&md5=7815efea7a941d4b41b9381635fd6d34CAS | 22815684PubMed |

Hill, P. J., De Deckker, P., von der Borch, C., and Murray-Wallace, C. V. (2009). Ancestral Murray River on the Lacepede Shelf, southern Australia: Late Quaternary migrations of a major river outlet and strandline development. Australian Journal of Earth Sciences 56, 135–157.
Ancestral Murray River on the Lacepede Shelf, southern Australia: Late Quaternary migrations of a major river outlet and strandline development.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Bull, J. J. (1996). A likelihood ratio test to detect conflicting phylogenetic signal. Systematic Biology 45, 92–98.
A likelihood ratio test to detect conflicting phylogenetic signal.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2012). Diversity patterns in Australia. In ‘Encyclopedia of Caves’. (Eds W. B. White and D. C. Culver.) pp. 203–219. (Academic Press.)

Hurley, D. E. (1954). Studies on the New Zealand amphipodan fauna. No. 2. The family Talitridae: the freshwater genus Chiltonia Stebbing. Transactions of the Royal Society of New Zealand 81, 563–577.

Kemp, S. (1917). XVII. Notes on Crustacea Decapoda in the Indian Museum. XI. Atyidae of the genus Paratya (= Xiphocaridina). Records of the Indian Museum 13, 293–306.

King, R. A. (2009). Two new genera and species of chiltoniid amphipods (Crustacea: Amphipoda: Talitroidea) from freshwater mound springs in South Australia. Zootaxa 2293, 35–52.

King, R. A., and Leys, R. (2011). The Australian freshwater amphipods Austrochiltonia australis and Austrochiltonia subtenuis (Amphipoda: Talitroidea: Chiltoniidae) confirmed and two new cryptic Tasmanian species revealed using a combined molecular and morphological approach. Invertebrate Systematics 25, 171–196.
The Australian freshwater amphipods Austrochiltonia australis and Austrochiltonia subtenuis (Amphipoda: Talitroidea: Chiltoniidae) confirmed and two new cryptic Tasmanian species revealed using a combined molecular and morphological approach.Crossref | GoogleScholarGoogle Scholar |

King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., and Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods from Western Australia. Journal of Crustacean Biology 32, 465–488.
Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Lambeck, K., and Chappell, J. (2001). Sea-level change through the last glacial cycle. Science 292, 679–686.
Sea-level change through the last glacial cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1els74%3D&md5=d57e90352b257ea850f0fc83df4c5ab0CAS | 11326090PubMed |

Lowry, J. K., and Myers, A. A. (2013). A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa 3610, 1–80.
A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cngtleltg%3D%3D&md5=f13dc47833036b4dd68c57ba6dfa7cdaCAS | 24699701PubMed |

Markgraf, V., McGlone, M., and Hope, G. (1995). Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems – a southern perspective. Trends in Ecology & Evolution 10, 143–147.
Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems – a southern perspective.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFajug%3D%3D&md5=7cbc6e19584d2e5909a001427fedf330CAS |

McLaren, S., Wallace, M. W., Gallagher, S. J., Miranda, J. A., Holdgate, G. R., Gow, L. J., Snowball, I., and Sandgren, P. (2011). Palaeogeographic, climatic and tectonic change in southeastern Australia: the Late Neogene evolution of the Murray Basin. Quaternary Science Reviews 30, 1086–1111.
Palaeogeographic, climatic and tectonic change in southeastern Australia: the Late Neogene evolution of the Murray Basin.Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., Adams, M., and Austin, A. D. (2009). Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Molecular Ecology 18, 109–122.
| 1:CAS:528:DC%2BD1MXit1Grsr0%3D&md5=728464eeecaf9ed0b2cb796df57ef811CAS | 19140968PubMed |

Murphy, N. P., Breed, M. F., Guzik, M. T., Cooper, S. J. B., and Austin, A. D. (2012). Trapped in desert springs: phylogeography of Australian desert spring snails. Journal of Biogeography 39, 1573–1582.
Trapped in desert springs: phylogeography of Australian desert spring snails.Crossref | GoogleScholarGoogle Scholar |

Peart, R., and Lowry, J. K. (2006). The amphipod genus Arcitalitrus (Crustacea: Amphipoda: Talitridae) of New South Wales forests, with descriptions of six new species. Records of the Australian Museum 58, 97–118.
The amphipod genus Arcitalitrus (Crustacea: Amphipoda: Talitridae) of New South Wales forests, with descriptions of six new species.Crossref | GoogleScholarGoogle Scholar |

Prescott, J. R., and Habermehl, M. (2008). Luminescence dating of spring mound deposits in the southwestern Great Artesian Basin, northern South Australia. Australian Journal of Earth Sciences 55, 167–181.
Luminescence dating of spring mound deposits in the southwestern Great Artesian Basin, northern South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Sksbg%3D&md5=7cba6c0c3f22b1dfeec99b787b202d15CAS |

Rachalewski, M, Banha, F, Grabowski, M, and Anastácio, P. M. (2013). Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117.
Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis.Crossref | GoogleScholarGoogle Scholar |

Rafinesque, C. S. (1815). ‘Analyse de la Nature ou Tableau de l’Univers et des Corps Organisés.’ (L’Imprime’rie de Jean Barravecchia: Palermo.)

Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. Available at: http://beast.bio.ed.ac.uk/Tracer [verified November 2013]

Raymo, M. E., and Nisancioglu, K. (2003). The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 18, 1011.
The 41 kyr world: Milankovitch’s other unsolved mystery.Crossref | GoogleScholarGoogle Scholar |

Richardson, L., Mathews, E., and Heap, A. (2005). Geomorphology and sedimentology of the South Western Planning Area of Australia: review and synthesis of relevant literature in support of Regional Marine Planning. Geoscience Australia, Record 2005/17. 124pp.

Sandiford, M., Quigley, M., de Broekert, P., and Jakica, S. (2009). Tectonic framework for the Cainozoic cratonic basins of Australia. Australian Journal of Earth Sciences 56, S5–S18.
Tectonic framework for the Cainozoic cratonic basins of Australia.Crossref | GoogleScholarGoogle Scholar |

Sayce, O. A. (1901). Description of some new Victorian freshwater Amphipoda. Proceedings of the Royal Society of Victoria 13, 225–242.

Sayce, O. A. (1902). Description of some new Victorian freshwater Amphipoda. No. 2. Proceedings of the Royal Society of Victoria 15, 47–58.

Serejo, C. S. (2004). Cladistic revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification. Zoologica Scripta 33, 551–586.
Cladistic revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification.Crossref | GoogleScholarGoogle Scholar |

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=ae59658adb8f61bd8b5026da9ff3e5a9CAS |

Smith, P. C. (1989). Hydrology. In ‘The Natural History of Dalhousie Springs’. (Eds W. Zeidler and W. F. Ponder.) pp. 27–39. (South Australian Museum: Adelaide.)

Stephenson, A. E. (1986). Lake Bungunnia, a Plio-Pleistocene megalake in southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 137–156.
Lake Bungunnia, a Plio-Pleistocene megalake in southern Australia.Crossref | GoogleScholarGoogle Scholar |

Suter, P. J. (1986). The Ephemeroptera (mayflies) of South Australia. Records of the South Australian Museum 19, 339–397.

Suter, P. J., and Bishop, J. E. (1990). Stoneflies (Plecoptera) of South Australia. In ‘Mayflies and Stoneflies: Life Histories and Biology’. (Ed. I. C. Campbell.) pp. 189–207. (Kluger Academic Publishers.)

Swofford, D. L. (2001). ‘PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0b8.’ (Sinauer: Sunderland, MA.)

Symula, R., Keogh, J. S., and Cannatella, D. C. (2008). Ancient phylogeographic divergence in southeastern Australia among populations of the widespread common froglet, Crinia signifera. Molecular Phylogenetics and Evolution 47, 569–580.
Ancient phylogeographic divergence in southeastern Australia among populations of the widespread common froglet, Crinia signifera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKlu7c%3D&md5=9d769fbb2d2868266a033223c5badcabCAS | 18348908PubMed |

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=969320e63a3cd35c223b824f2f314d8bCAS | 9396791PubMed |

Waters, J. M., Frase, C. I., and Hewitt, G. M. (2013). Founder takes all: density-dependent processes structure biodiversity. Trends in Ecology & Evolution 28, 78–85.
Founder takes all: density-dependent processes structure biodiversity.Crossref | GoogleScholarGoogle Scholar |

Williams, W. D. (1962). The Australian freshwater amphipods. Australian Journal of Marine and Freshwater Research 13, 198–216.
The Australian freshwater amphipods.Crossref | GoogleScholarGoogle Scholar |

Williams, D. F., Thunell, R. C., Tappa, E., Domenico, R., and Raffi, I. (1988). Chronology of the Pleistocene oxygen isotope record: 0–1.88 m.y. B.P. Palaeogeography, Palaeoclimatology, Palaeoecology 64, 221–240.
Chronology of the Pleistocene oxygen isotope record: 0–1.88 m.y. B.P.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksVWitrw%3D&md5=6964a906b586a5450b0fa6b40621648eCAS |

Zeidler, W. (1982). South Australian freshwater crayfish. South Australian Naturalist 56, 36–42.

Zeidler, W. (1988). A redescription of Afrochiltonia capensis (K.H. Barnard, 1916) with a review of the genera of the family Ceinidae (Crustacea, Amphipoda). Annals of the South African Museum 98, 105–119.

Zeidler, W. (1991). A new genus and species of phreatic amphipod (Crustacea: Amphipoda) belonging in the “chiltonia” generic group, from Dalhousie Springs, South Australia. Transactions of the Royal Society of South Australia 115, 177–187.

Zeidler, W. (1997). A new species of freshwater amphipod, Austrochiltonia dalhousiensis sp. nov. (Crustacea: Amphipoda: Hyalellidae) from Dalhousie Springs, South Australia. Transactions of the Royal Society of South Australia 121, 29–42.

Zeidler, W. (2000). Note on the origin of freshwater crayfish occurring on Kangaroo Island, South Australia. Records of the South Australian Museum 33, 71–72.