Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

The population genetics of the western purple-crowned fairy-wren (Malurus coronatus coronatus), a declining riparian passerine

Anja Skroblin A B D , Andrew Cockburn A and Sarah Legge B C
+ Author Affiliations
- Author Affiliations

A Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.

B Australian Wildlife Conservancy, Mornington Wildlife Sanctuary, PMB 925, Derby, WA 6728, Australia.

C School for Environmental Research and North Australian Biodiversity Hub, Charles Darwin University, Casuarina, NT 0909, Australia.

D Corresponding author. Email: anjaskroblin@yahoo.com

Australian Journal of Zoology 62(3) 251-259 https://doi.org/10.1071/ZO13087
Submitted: 25 October 2013  Accepted: 17 July 2014   Published: 8 August 2014

Abstract

We investigate the population genetic structure of the declining western subspecies of the purple-crowned fairy-wren (Malurus coronatus coronatus) in order to guide conservation management recommendations for this riparian habitat specialist. Our analysis of multilocus microsatellite data, from 79 individuals sampled from across the species’ range, indicates that M. c. coronatus occurs as genetically differentiated subpopulations that correspond to catchment boundaries or expansive gaps in habitat along waterways. The genetic similarity of large populations of fairy-wrens on four catchments (Fitzroy, Durack, Drysdale and Victoria) indicates widespread recent gene flow, whereas the high genetic distinctiveness of the Bindoola and Isdell catchments may reflect the current geographic isolation of these smaller populations. Genetic differentiation of these smaller geographically isolated populations affirms the negative effect that habitat degradation and fragmentation can have on population connectivity. A regional-scale approach to conservation with a focus on preventing degradation and enhancing connectivity may be critical to safeguard the persistence of M. c. coronatus subpopulations.


References

Allendordf, F. W., and Luikart, G. (2007). ‘Conservation and the Genetics of Populations.’ (Blackwell Publishing: Melbourne.)

Amos, W., and Balmford, A. (2001). When does conservation genetics matter? Heredity 87, 257–265.
When does conservation genetics matter?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFegtA%3D%3D&md5=cc7387aa80361e3780776277048cb467CAS | 11737272PubMed |

Barrett, G., Silcocks, A., Barry, S., Cunningham, R., and Poulter, R. (2003). ‘The New Atlas of Australian Birds.’ (Royal Australian Ornithologists Union: Melbourne.)

Blackmore, C. J., Adcock, G. J., Ebert, D., and Heinsohn, R. (2006). Microsatellite loci for population and behavioural studies of grey-crowned babblers (Pomatostomus temporalis: Aves). Molecular Ecology Notes 6, 412–414.
Microsatellite loci for population and behavioural studies of grey-crowned babblers (Pomatostomus temporalis: Aves).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlGqsbg%3D&md5=0a24f081b9bdc0d975e5d7771b479b43CAS |

Bohonak, A. J. (1999). Dispersal, gene flow, and population structure. The Quarterly Review of Biology 74, 21–45.
Dispersal, gene flow, and population structure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7otFKltw%3D%3D&md5=240a4e514aa74078bf8a2d59173108cbCAS | 10081813PubMed |

Bruford, M. W., Hannotte, O., Brookfield, J. F. Y., and Burke, T. (1998). Multilocus and single-locus DNA fingerprinting. In ‘Molecular Genetic Analysis of Populations: A Practical Approach’. (Ed. A. R. Hoelzel.) pp. 287–336. (IRL Press: Oxford.)

Charlesworth, B., Charlesworth, D., and Barton, N. H. (2003). The effects of genetic and geographic structure on neutral variation. Annual Review of Ecology Evolution and Systematics 34, 99–125.
The effects of genetic and geographic structure on neutral variation.Crossref | GoogleScholarGoogle Scholar |

Coulon, A., Fitzpatrick, J. W., Bowman, R., and Lovette, I. J. (2010). Effects of habitat fragmentation on effective dispersal of Florida scrub-jays. Conservation Biology 24, 1080–1088.
Effects of habitat fragmentation on effective dispersal of Florida scrub-jays.Crossref | GoogleScholarGoogle Scholar | 20151985PubMed |

Dickman, C. R., Predavec, M., and Downey, F. J. (1995). Long-range movements of small mammals in arid Australia: implications for land management. Journal of Arid Environments 31, 441–452.
Long-range movements of small mammals in arid Australia: implications for land management.Crossref | GoogleScholarGoogle Scholar |

Dieckmann, U., O’Hara, B., and Weisser, W. (1999). The evolutionary ecology of dispersal. Trends in Ecology & Evolution 14, 88–90.
The evolutionary ecology of dispersal.Crossref | GoogleScholarGoogle Scholar |

Double, M. C., Dawson, D., Burke, T., and Cockburn, A. (1997). Finding the fathers in the least faithful bird: a microsatellite-based genotyping system for the superb fairy-wren Malurus cyaneus. Molecular Ecology 6, 691–693.
Finding the fathers in the least faithful bird: a microsatellite-based genotyping system for the superb fairy-wren Malurus cyaneus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFylurw%3D&md5=c35c81265977f2c1a15e62f676054dd4CAS |

Earl, D. A., and vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=eb59ed4aa80797d01ea0ca7504502ccfCAS | 15969739PubMed |

Fahrig, L. (2001). How much habitat is enough? Biological Conservation 100, 65–74.
How much habitat is enough?Crossref | GoogleScholarGoogle Scholar |

Fahrig, L., and Merriam, G. (1985). Habitat patch connectivity and population survival. Ecology 66, 1762–1768.
Habitat patch connectivity and population survival.Crossref | GoogleScholarGoogle Scholar |

Fahrig, L., and Merriam, G. (1994). Conservation of fragmented populations. Conservation Biology 8, 50–59.
Conservation of fragmented populations.Crossref | GoogleScholarGoogle Scholar |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| 1:CAS:528:DC%2BD3sXnvF2ntrk%3D&md5=202ecf9e0a4fa118ea50aa38cc0a24c5CAS | 12930761PubMed |

Frankham, R. (1995). Conservation genetics. Annual Review of Genetics 29, 305–327.
Conservation genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFOm&md5=52a2de56ef13a8cbd0aa107d3c6e93e9CAS | 8825477PubMed |

Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conservation Biology 10, 1500–1508.
Relationship of genetic variation to population size in wildlife.Crossref | GoogleScholarGoogle Scholar |

Funk, C. W., Blouin, M. S., Corn, P. S., Maxell, B. A., Pilliod, D. S., Amish, S., and Allendorf, F. W. (2005). Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14, 483–496.
Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1alsro%3D&md5=292189f2f986bb208d1c55c66488ab52CAS |

Garnett, S. T., Szabo, J. K., and Dutson, G. (2011). ‘The Action Plan for Australian Birds 2010.’ (CSIRO Publishing: Melbourne.)

Gerlach, G., and Musolf, K. (2000). Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conservation Biology 14, 1066–1074.
Fragmentation of landscape as a cause for genetic subdivision in bank voles.Crossref | GoogleScholarGoogle Scholar |

Halliburton, R. (2004). ‘Introduction to Population Genetics.’ (Pearson Education: Upper Saddle River.)

Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41–49.
Metapopulation dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntl2rurw%3D&md5=cd2d096fbc586fbe53dd2a2617cbb29cCAS |

Higgins, P. J., Peter, J. M., and Steele, W. K. E. (2001). ‘Handbook of Australian, New Zealand and Antarctic Birds. Volume 5: Tyrant-flycatchers to Chats.’ (Oxford University Press: Melbourne.)

Holsinger, K. E. (2000). Demography and extinction in small populations. In ‘Genetics, Demography and Viability of Fragmented Populations’. (Eds A. G. Young and G. M. Clarke.) pp. 55–74. (Cambridge University Press: Cambridge.)

Hubisz, M. J., Falush, D., Stephens, M., and Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9, 1322–1332.
Inferring weak population structure with the assistance of sample group information.Crossref | GoogleScholarGoogle Scholar | 21564903PubMed |

Johanson, H. C., Hyland, V., Wicking, C., and Sturm, R. A. (2009). DNA elution from buccal cells stored on Whatman FTA Classic Cards using a modified methanol fixation method. BioTechniques 46, 309–311.
| 1:CAS:528:DC%2BD1MXkvFWntLs%3D&md5=1d42b87d38e8d65ec96eb6f31a743b2dCAS | 19450238PubMed |

Kingma, S. A., Hall, M. L., Segelbacher, G., and Peters, A. (2009). Radical loss of an extreme extra-pair mating system. BMC Ecology 9, 15.
Radical loss of an extreme extra-pair mating system.Crossref | GoogleScholarGoogle Scholar | 19454026PubMed |

Leberg, P. L. (2002). Estimating allelic richness: effects of sample size and bottlenecks. Molecular Ecology 11, 2445–2449.
Estimating allelic richness: effects of sample size and bottlenecks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlSlsLY%3D&md5=b136dbb9923d77a95dabeec3c1fbaacfCAS | 12406254PubMed |

Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51, 238–254.
Strategies to protect biological diversity and the evolutionary processes that sustain it.Crossref | GoogleScholarGoogle Scholar | 12028731PubMed |

National Land and Resources Audit (2002). ‘Australian Catchment, River and Estuary Assessment 2002.’ (Natural Heritage Trust: Canberra.)

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pearse, D. E., and Crandall, K. A. (2004). Beyond F ST: analysis of population genetic data for conservation. Conservation Genetics 5, 585–602.
Beyond F ST: analysis of population genetic data for conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrtbnL&md5=08d23192f65c653d9f6d835ae709b4aaCAS |

Pimm, S. L., Jones, H. L., and Diamond, J. (1988). On the risk of extinction. American Naturalist 132, 757–785.
On the risk of extinction.Crossref | GoogleScholarGoogle Scholar |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=abf0aa80c117c442e1137ae79fc63099CAS | 10835412PubMed |

Ray, C. (2001). Maintaining genetic diversity despite local extinctions: effects of population scale. Biological Conservation 100, 3–14.
Maintaining genetic diversity despite local extinctions: effects of population scale.Crossref | GoogleScholarGoogle Scholar |

Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Rowley, I. (1993). The purple-crowned fairy-wren Malurus coronatus. I. History, distribution and present status. Emu 93, 220–234.
The purple-crowned fairy-wren Malurus coronatus. I. History, distribution and present status.Crossref | GoogleScholarGoogle Scholar |

Russell, E., and Rowley, I. (1993). Philopatry or dispersal: competition for territory vacancies in the splendid fairy-wren, Malurus splendens. Animal Behaviour 45, 519–539.
Philopatry or dispersal: competition for territory vacancies in the splendid fairy-wren, Malurus splendens.Crossref | GoogleScholarGoogle Scholar |

Skroblin, A., and Legge, S. (2010). The distribution and status of the western subspecies of the purple-crowned fairy-wren (Malurus coronatus coronatus). Emu 110, 339–347.
The distribution and status of the western subspecies of the purple-crowned fairy-wren (Malurus coronatus coronatus).Crossref | GoogleScholarGoogle Scholar |

Skroblin, A., and Legge, S. (2012). The influence of fine-scale habitat requirements and riparian degradation on the distribution of the purple-crowned fairy-wren (Malurus coronatus coronatus) in northern Australia. Austral Ecology 37, 874–884.
The influence of fine-scale habitat requirements and riparian degradation on the distribution of the purple-crowned fairy-wren (Malurus coronatus coronatus) in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Skroblin, A., and Legge, S. (2013). Conservation of the patchily distributed and declining purple-crowned fairy-wren (Malurus coronatus coronatus) across a vast landscape: the need for a collaborative landscape-scale approach. PLoS ONE 8, e64942.
Conservation of the patchily distributed and declining purple-crowned fairy-wren (Malurus coronatus coronatus) across a vast landscape: the need for a collaborative landscape-scale approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFemtrw%3D&md5=f3c3eb54428a858e87e6a73936ab1e4fCAS | 23734229PubMed |

Skroblin, A., and Murphy, S. (2013). The conservation status of Australian malurids and their value as models in understanding land-management issues. Emu 113, 309–318.
The conservation status of Australian malurids and their value as models in understanding land-management issues.Crossref | GoogleScholarGoogle Scholar |

Skroblin, A., Lanfear, R., Cockburn, A., and Legge, S. (2012). Inferring population connectivity across the range of the purple-crowned fairy-wren (Malurus coronatus) from mitochondrial DNA and morphology: implications for conservation management. Australian Journal of Zoology 60, 199–209.
Inferring population connectivity across the range of the purple-crowned fairy-wren (Malurus coronatus) from mitochondrial DNA and morphology: implications for conservation management.Crossref | GoogleScholarGoogle Scholar |

Smith, L. A., and Johnstone, R. E. (1977). Status of the purple-crowned wren (Malurus coronatus) and buff-sided robin (Poecilodryas superciliosa) in Western Australia. Western Australian Naturalist 13, 185–188.

Soulé, M. E., Mackey, B., Recher, H. F., Williams, J. E., Woinarski, J. C. Z., Driscoll, D., Dennison, W. C., and Jones, M. E. (2006). The role of connectivity in Australian conservation. In ‘Connectivity Conservation’. (Eds K. R. Crooks and M. Sanjayan.) pp. 649–675. (Cambridge University Press.)

Spielman, D., Brook, B. W., and Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America 101, 15 261–15 264.
Most species are not driven to extinction before genetic factors impact them.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSgu7k%3D&md5=bb11cdedef4621a9bfec8c75ee2be030CAS |

Valentine, L. E., Schwarzkopf, L., Johnson, C. N., and Grice, A. C. (2007). Burning season influences the response of bird assemblages to fire in tropical savannas. Biological Conservation 137, 90–101.
Burning season influences the response of bird assemblages to fire in tropical savannas.Crossref | GoogleScholarGoogle Scholar |

van Doorn, A. (2007). Ecology and conservation of the purple-crowned fairy-wren (Malurus coronatus coronatus) in the Northern Territory, Australia. Ph.D. Thesis, University of Florida, Gainsville.

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=642d3c27a53cc46b25cea2a96ea87beeCAS |

Webster, M. S., Tarvin, K. A., Tuttle, E. M., and Pruett-Jones, S. (2004). Reproductive promiscuity in the splendid fairy-wren: effects of group size and auxiliary reproduction. Behavioral Ecology 15, 907–915.
Reproductive promiscuity in the splendid fairy-wren: effects of group size and auxiliary reproduction.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z. (1990). Effects of fire on the bird communities of tropical woodlands and open forests in northern Australia. Australian Journal of Ecology 15, 1–22.
Effects of fire on the bird communities of tropical woodlands and open forests in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Whitehead, P. J., Bowman, D. M. J. S., and Russell-Smith, J. (1992). Conservation of mobile species in a variable environment: the problem of reserve design in the Northern Territory, Australia. Global Ecology and Biogeography Letters 2, 1–10.
Conservation of mobile species in a variable environment: the problem of reserve design in the Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Zellmer, A. J., and Knowles, L. L. (2009). Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Molecular Ecology 18, 3593–3602.
Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrnN&md5=435ea6d0e9dc76653d77fa7a5656b03aCAS | 19674302PubMed |