Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Improving genetic monitoring of the northern hairy-nosed wombat (Lasiorhinus krefftii)

Lauren C. White A , Alan Horsup B , Andrea C. Taylor C and Jeremy J. Austin A D E
+ Author Affiliations
- Author Affiliations

A Australian Centre for Ancient DNA, School of Earth and Environmental Sciences and Environment Institute, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

B Threatened Species Partnerships, Department of Environment and Heritage Protection, 61 Yeppoon Road, Parkhurst, Qld 4072, Australia.

C School of Biological Sciences, Monash University, Clayton, Vic. 3080, Australia.

D Sciences Department, Museum Victoria, Carlton Gardens, Melbourne, Vic. 3001, Australia.

E Corresponding author. Email: jeremy.austin@adelaide.edu.au

Australian Journal of Zoology 62(3) 246-250 https://doi.org/10.1071/ZO14031
Submitted: 7 May 2014  Accepted: 5 July 2014   Published: 31 July 2014

Abstract

The endangered northern hairy-nosed wombat (Lasiorhinus krefftii) has been monitored via remote sampling and genetic techniques since 2000, thus avoiding the detrimental effects on the animals of trapping and increasing the precision of abundance estimates. The currently available dinucleotide microsatellite markers used for this task are prone to stutter and other polymerase chain reaction artefacts, making allele calling difficult, and requiring costly duplication to ensure accuracy. To remedy this we have developed eight new tri- and tetranucleotide microsatellite markers that reduce the problem of stutter in DNA analysis. These new markers, along with three of the existing markers (two microsatellites and the SRY gender marker) were optimised in a single multiplex reaction that will reduce the time and cost of future northern hairy-nosed wombat hair censuses. We tested this new multiplex on 277 non-invasively collected hairs. One locus was rejected due to null-allele issues. The remaining nine microsatellite loci had two or three alleles. Genotype frequencies in the sample of detected individuals did not differ significantly from Hardy–Weinberg equilibrium and there was no evidence of linkage disequilibrium. This new multiplex provides comparable power to distinguish individuals, fewer issues with stutter artefacts and a reduced time and cost of analysis. It will be useful for future population censuses and long-term monitoring of individuals once they have been scored in previously genotyped and assigned samples.


References

Abdelkrim, J., Robertson, B. C., Stanton, J.-A. L., and Gemmell, N. J. (2009). Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 46, 185–192.
Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlGguro%3D&md5=abfe882f3f9c7fb43befc0affc251e18CAS | 19317661PubMed |

Arnemo, J. M., Ahlqvist, P., Andersen, R., Berntsen, F., Ericsson, G., Odden, J., Brunberg, S., Segerstrom, P., and Swenson, J. E. (2006). Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildlife Biology 12, 109–113.
Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia.Crossref | GoogleScholarGoogle Scholar |

Banks, S. C., Hoyle, S. D., Horsup, A., Sunnucks, P., and Taylor, A. C. (2003). Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Animal Conservation 6, 101–107.
Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material.Crossref | GoogleScholarGoogle Scholar |

Beheregaray, L. B., Sunnucks, P., Alpers, D. L., Banks, S. C., and Taylor, A. C. (2000). A set of microsatellite loci for the hairy-nosed wombats (Lasiorhinus krefftii and L. latifrons). Conservation Genetics 1, 89–92.
A set of microsatellite loci for the hairy-nosed wombats (Lasiorhinus krefftii and L. latifrons).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1Srsb8%3D&md5=6e39e7f3808a6d06c1768a26d94d2c37CAS |

Buckland, S. T. (1993). ‘Distance Sampling: Estimating Abundance of Biological Populations.’ (Chapman & Hall: London.)

Carvalho, D. C., Sasaki, M., Hammer, M. P., and Beheregaray, L. B. (2012). Development of 18 microsatellite markers for the southern purple-spotted gudgeon (Mogurnda adspersa) from the lower Murray–Darling Basin through 454 pyrosequencing. Conservation Genetics Resources 4, 339–341.
Development of 18 microsatellite markers for the southern purple-spotted gudgeon (Mogurnda adspersa) from the lower Murray–Darling Basin through 454 pyrosequencing.Crossref | GoogleScholarGoogle Scholar |

Chakraborty, R, Kimmel, M, Stivers, D. N., Davison, L. J., and Deka, R (1997). Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proceedings of the National Academy of Sciences of the United States of America 94, 1041–1046.
| 1:CAS:528:DyaK2sXhtVyht70%3D&md5=f6856d4cafe4a4e4bc40d8c8811e0cfeCAS | 9023379PubMed |

Crossman, D. G., Johnson, C. N., and Horsup, A. B. (1994). Trends in the population of the northern hairy-nosed wombat (Lasiorhinus krefftii) in Epping Forest National Park, central Queensland. Pacific Conservation Biology 1, 141–149.

Gardner, M. G., Fitch, A. J., Bertozzi, T., and Lowe, A. J. (2011). Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development.Crossref | GoogleScholarGoogle Scholar | 21679314PubMed |

Gordon, G, Riney, T, Toop, J, Lawrie, B. C., and Godwin, M. D. (1985). Observations on the Queensland hairy-nosed wombat Lasiorhinus krefftii (Owen). Biological Conservation 33, 165–195.
Observations on the Queensland hairy-nosed wombat Lasiorhinus krefftii (Owen).Crossref | GoogleScholarGoogle Scholar |

Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Leger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F., and Petit, R. J. (2011). Current trends in microsatellite genotyping. Molecular Ecology Resources 11, 591–611.
Current trends in microsatellite genotyping.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mngslyltw%3D%3D&md5=1187101a3d0a201b6aae6108b5ce6d05CAS | 21565126PubMed |

Holleley, C. E., and Geerts, P. G. (2009). Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46, 511–517.
Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1ajsr4%3D&md5=7309687beec9598c47657aa006d2b51eCAS | 19594450PubMed |

Horsup, A. (2004). Recovery plan for the northern hairy-nosed wombat Lasiorhinus krefftii 2004–2008. Report to the Department of Environment and Heritage, Canberra. Environmental Protection Agency. Queensland Parks and Wildlife Service, Brisbane, Australia.

Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine & Biotechnology 2012, 1–11.
Comparison of next-generation sequencing systems.Crossref | GoogleScholarGoogle Scholar |

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z. T., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P. G., Begley, R. F., and Rothberg, J. M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.
| 1:CAS:528:DC%2BD2MXpvFOrt7s%3D&md5=1acaef9b5b9071f0d092a18408f3bdfdCAS | 16056220PubMed |

Meglecz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., and Martin, J.-F. (2010). QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26, 403–404.
QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Ogu7g%3D&md5=f7e12389e7fb34ed2bec4a791d9b36d5CAS | 20007741PubMed |

Murray, V., Monchawin, C., and England, P. R. (1993). The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Research 21, 2395–2398.
The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1ChsLc%3D&md5=d4c47e50a899113e27035b69c7ab1b56CAS | 8506134PubMed |

Nicholls, J. A., Double, M. C., Rowell, D. M., and Magrath, R. D. (2000). The evolution of cooperative and pair breeding in thornbills Acanthiza (Pardalotidae). Journal of Avian Biology 31, 165–176.
The evolution of cooperative and pair breeding in thornbills Acanthiza (Pardalotidae).Crossref | GoogleScholarGoogle Scholar |

Rassmann, K., Schlötterer, C., and Tautz, D. (1991). Isolation of simple‐sequence loci for use in polymerase chain reaction‐based DNA fingerprinting. Electrophoresis 12, 113–118.
Isolation of simple‐sequence loci for use in polymerase chain reaction‐based DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1aku78%3D&md5=ecdc6810bb895cf612168cb6014d581cCAS | 2040259PubMed |

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Rozen, S., and Skaletsky, H. (1999). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols. Vol. 132’. (Eds S. Misener and S. Krawetz.) pp. 365–386. (Humana Press: New Jersey, USA)

Schug, M. D., Hutter, C. M., Wetterstrand, K. A., Gaudette, M. S., Mackay, T. F., and Aquadro, C. F. (1998). The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Molecular Biology and Evolution 15, 1751–1760.
| 1:CAS:528:DyaK1MXjtVyl&md5=010a7d63c94facd7ed578c97f9b69de4CAS | 9866209PubMed |

Sloane, M. A., Sunnucks, P., Alpers, D., Beheregaray, L. B., and Taylor, A. C. (2000). Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method. Molecular Ecology 9, 1233–1240.
Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCmur4%3D&md5=52397e2d7896cb875c1f41dc4a9d7f2eCAS | 10972763PubMed |

Taylor, A., Sherwin, W., and Wayne, R. (1994). Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy‐nosed wombat Lasiorhinus krefftii. Molecular Ecology 3, 277–290.
Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy‐nosed wombat Lasiorhinus krefftii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FgsFGlsQ%3D%3D&md5=2a8d679e5deebaef16b248d92fce0650CAS | 7921355PubMed |

Valiere, N. (2002). GIMLET: a computer program for analysing genetic individual identification data. Molecular Ecology Notes 2, 377–379.
| 1:CAS:528:DC%2BD38XnvVWhsLo%3D&md5=096e305a86d2c9862c17639d851b0462CAS |

Van Oosterhout, C, Hutchinson, W. F., Wills, D. P. M., and Shipley, P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=642d3c27a53cc46b25cea2a96ea87beeCAS |

Waits, L. P., Luikart, G., and Taberlet, P. (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology 10, 249–256.
Estimating the probability of identity among genotypes in natural populations: cautions and guidelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1ejtbs%3D&md5=6b96497bed1dbc6598fde8c4541c5a1bCAS | 11251803PubMed |

Walker, F. M., Sunnucks, P., and Taylor, A. C. (2006). Genotyping of “captured” hairs reveals burrow-use and ranging behavior of southern hairy-nosed wombats. Journal of Mammalogy 87, 690–699.
Genotyping of “captured” hairs reveals burrow-use and ranging behavior of southern hairy-nosed wombats.Crossref | GoogleScholarGoogle Scholar |

Walker, F. M., Horsup, A., and Taylor, A. C. (2009). Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats. Molecular Ecology Resources 9, 720–724.
Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Ggtb0%3D&md5=e7ef6056146b67952b8b4b3afea85ec1CAS | 21564730PubMed |

Watson, C., Margan, S., and Johnston, P. (1998). Sex-chromosome elimination in the bandicoot Isoodon macrourus using Y-linked markers. Cytogenetic and Genome Research 81, 54–59.
Sex-chromosome elimination in the bandicoot Isoodon macrourus using Y-linked markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslajtr8%3D&md5=883e31ddf1d1f18babea211b816aa74bCAS |

Woods, J. G., Paetkau, D., Lewis, D., McLellan, B. N., Proctor, M., and Strobeck, C. (1999). Genetic tagging of free-ranging black and brown bears. Wildlife Society Bulletin 27, 616–627.

Yu, J.-N., Won, C., Jun, J., Lim, Y., and Kwak, M. (2011). Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer (Hydropotes inermis argyropus). PLoS ONE 6, e26933.
Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer (Hydropotes inermis argyropus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2lurbM&md5=22e59c9691017e7e4a8b46f27e72cbe8CAS | 22069476PubMed |