Phylogeographic evidence for evolutionary refugia in the Gulf sandstone ranges of northern Australia
Catherine Noble A , Rebecca J. Laver A , Dan F. Rosauer A , Simon Ferrier B and Craig Moritz A CA Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT 2601, Australia.
B CSIRO Land and Water, Black Mountain, ACT 2601, Australia.
C Corresponding author. Email: craig.moritz@anu.edu.au
Australian Journal of Zoology 65(6) 408-416 https://doi.org/10.1071/ZO17079
Submitted: 01 December 2017 Accepted: 23 July 2018 Published: 17 August 2018
Abstract
Locating and protecting climate change refugia is important to conserving biodiversity with accelerating climate change. Comparative phylogeographic analysis provides an effective tool for locating such refugia, as long-term retention of one or more populations within a refugial landscape will generate unique genetic lineages. The ranges of the western Gulf region of northern Australia are thought to represent a significant arid-zone refugium, in which case low-dispersal organisms should have strong phylogeographic structure across the region. To test for this, we conducted extensive sampling of three species of Gehyra geckos and analysed diversity for mitochondrial DNA and eight nuclear loci. These analyses revealed congruent and high phylogeographic diversity, especially, but not exclusively, in rock-restricted species. This finding, and other recent phylogeographic evidence, demonstrates that these topographically variable landforms have enabled persistence of ecologically diverse vertebrate species through the climate changes of the late Pleistocene. Identification of this relatively under-protected region as a significant climate change refugium points to the need to expand protected areas in this region and to invest in ecological management across existing National Parks and Indigenous Protected Areas.
Additional keywords: gekkonid lizards, Gulf Fall Uplands, Mount Isa Inlier, Selwyn Ranges, short-range endemism.
References
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.| BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |
Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G., and Ladiges, P. Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
| Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |
Bragg, J. G., Potter, S., Bi, K., Catullo, R., Donnellan, S. C., Eldridge, M. D. B., Joseph, L., Keogh, J. S., Oliver, P. M., Rowe, K. E., and Moritz, C. (2017). Resources for phylogenomic analyses of Australian terrestrial vertebrates. Molecular Ecology Resources 17, 869–876.
| Resources for phylogenomic analyses of Australian terrestrial vertebrates.Crossref | GoogleScholarGoogle Scholar |
Bustard, H. R. (1965). The systematic status of the Australian geckos Gehyra variegata (Duméril and Bibron, 1836) and Gehyra australis Gray, 1845. Herpetologica 20, 259–272.
Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews 27, 2576–2585.
| Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography.Crossref | GoogleScholarGoogle Scholar |
Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
| Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |
Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., and Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789.
| Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot.Crossref | GoogleScholarGoogle Scholar |
Catullo, R. A., Lanfear, R., Doughty, P., and Keogh, J. S. (2014). The biogeographical boundaries of northern Australia: evidence from ecological niche models and a multi-locus phylogeny of Uperoleia toadlets (Anura: Myobatrachidae). Journal of Biogeography 41, 659–672.
| The biogeographical boundaries of northern Australia: evidence from ecological niche models and a multi-locus phylogeny of Uperoleia toadlets (Anura: Myobatrachidae).Crossref | GoogleScholarGoogle Scholar |
Couper, P., and Hoskin, C. (2008). Litho-refugia: the importance of rock landscapes for the long-term persistence of Australian rainforest fauna. Australian Zoologist 34, 554–560.
| Litho-refugia: the importance of rock landscapes for the long-term persistence of Australian rainforest fauna.Crossref | GoogleScholarGoogle Scholar |
Dunlop, M., Hilbert, D. W., Ferrier, S., House, A., Liedloff, A., Prober, S. M., Smyth, A., Martin, T. G., Harwood, T., Williams, K. J., Fletcher, C., and Murphy, H. (2012). The implications of climate change for biodiversity conservation and the National Reserve System: final synthesis. CSIRO Climate Adaptation Flagship, Canberra.
Eo, S. H., and DeWoody, J. A. (2010). Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proceedings of the Royal Society B: Biological Sciences 227, 3587–3592.
Flot, J.-F. (2010). SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Molecular Ecology Resources 10, 162–166.
| SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments.Crossref | GoogleScholarGoogle Scholar |
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
Heinicke, M. P., Greenbaum, E., Jackman, T. R., and Bauer, A. M. (2011). Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zoologica Scripta 40, 584–602.
| Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia.Crossref | GoogleScholarGoogle Scholar |
Heled, J., and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570–580.
| Bayesian inference of species trees from multilocus data.Crossref | GoogleScholarGoogle Scholar |
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 405, 907–913.
| The genetic legacy of the Quaternary ice ages.Crossref | GoogleScholarGoogle Scholar |
Huson, D. H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
| Application of phylogenetic networks in evolutionary studies.Crossref | GoogleScholarGoogle Scholar |
Joly, S., and Bruneau, A. (2006). Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: an example from Rosa in North America. Systematic Biology 55, 623–636.
| Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: an example from Rosa in North America.Crossref | GoogleScholarGoogle Scholar |
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |
Keppel, G., Van Niel, K. P., Wardell‐Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G., Hopper, S. D., and Franklin, S. E. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21, 393–404.
| Refugia: identifying and understanding safe havens for biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar |
King, M. (1983). The Gehyra australis species complex (Sauria: Gekkonidae). Amphibia-Reptilia 4, 147–169.
| The Gehyra australis species complex (Sauria: Gekkonidae).Crossref | GoogleScholarGoogle Scholar |
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
| MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar |
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar |
Mackey, B., Berry, S., Hugh, S., Ferrier, S., Harwood, T. D., and Williams, K. J. (2012). Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges. Ecological Applications 22, 1852–1864.
| Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges.Crossref | GoogleScholarGoogle Scholar |
Moritz, C., Hoskin, C. J., MacKenzie, J. B., Phillips, B. L., Tonione, M., Silva, N., VanDerWal, J., Williams, S. E., and Graham, C. H. (2009). Identification and dynamics of a cryptic suture zone in tropical rainforest. Proceedings of the Royal Society of London. Series B, Biological Sciences 276, 1235–1244.
| Identification and dynamics of a cryptic suture zone in tropical rainforest.Crossref | GoogleScholarGoogle Scholar |
Moritz, C., Fujita, M. K., Rosauer, D., Agudo, R., Bourke, G., Doughty, P., Palmer, R., Pepper, M., Potter, S., Pratt, R., Scott, M., Tonione, M., and Donnellan, S. (2016). Multilocus phylogeography reveals nested endemism in a gecko across the monsoonal tropics of Australia. Molecular Ecology 25, 1354–1366.
| Multilocus phylogeography reveals nested endemism in a gecko across the monsoonal tropics of Australia.Crossref | GoogleScholarGoogle Scholar |
Morton, S. R., Short, J., and Barker, R. D. (1995). Refugia for biological diversity in arid and semi-arid Australia. Department of Environment, Sports and Territories, Canberra.
Oliver, P. M., and Doughty, P. (2016). Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones. Zootaxa 4088, 151–176.
| Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones.Crossref | GoogleScholarGoogle Scholar |
Oliver, P. M., and McDonald, P. (2016). Young relicts and old relicts: a novel palaeoendemic vertebrate from the Australian Central Uplands. Royal Society Open Science 3, 160018.
| Young relicts and old relicts: a novel palaeoendemic vertebrate from the Australian Central Uplands.Crossref | GoogleScholarGoogle Scholar |
Oliver, P. M., Laver, R. J., De Mello Martins, F., Pratt, R. C., Hunjan, S., and Moritz, C. C. (2017). A novel hotspot of vertebrate endemism and an evolutionary refugium in tropical Australia. Diversity & Distributions 23, 53–66.
| A novel hotspot of vertebrate endemism and an evolutionary refugium in tropical Australia.Crossref | GoogleScholarGoogle Scholar |
Pepper, M., Ho, S. Y. W., Fujita, M. K., and Keogh, J. S. (2011). The genetic legacy of aridification: climate cycling fostered lizard diversification in Australian montane refugia and left low-lying deserts genetically depauperate. Molecular Phylogenetics and Evolution 61, 750–759.
| The genetic legacy of aridification: climate cycling fostered lizard diversification in Australian montane refugia and left low-lying deserts genetically depauperate.Crossref | GoogleScholarGoogle Scholar |
Pepper, M., Doughty, P., and Keogh, J. S. (2013). Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium. Journal of Biogeography 40, 1225–1239.
| Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium.Crossref | GoogleScholarGoogle Scholar |
Peter, B. M., and Slatkin, M. (2013). Detecting range expansions from genetic data. Evolution 67, 3274–3289.
| Detecting range expansions from genetic data.Crossref | GoogleScholarGoogle Scholar |
Potter, S., Eldridge, M. D. B., Taggart, D. A., and Cooper, S. J. B. (2012). Multiple biogeographical barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies. Molecular Ecology 21, 2254–2269.
| Multiple biogeographical barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies.Crossref | GoogleScholarGoogle Scholar |
Potter, S., Bragg, J. G., Peter, B. M., Bi, K., and Moritz, C. (2016). Phylogenomics at the tips: inferring lineages and their demographic history in a tropical lizard, Carlia amax. Molecular Ecology 25, 1367–1380.
| Phylogenomics at the tips: inferring lineages and their demographic history in a tropical lizard, Carlia amax.Crossref | GoogleScholarGoogle Scholar |
Potter, S., Xue, A. T., Bragg, J. G., Rosauer, D. F., Roycroft, E. J., and Moritz, C. (2018). Pleistocene climatic changes drive diversification across a tropical savanna. Molecular Ecology 27, 520–532.
Proske, U., Heslop, D., and Haberle, S. (2014). A Holocene record of coastal landscape dynamics in the eastern Kimberley region, Australia. Journal of Quaternary Science 29, 163–174.
| A Holocene record of coastal landscape dynamics in the eastern Kimberley region, Australia.Crossref | GoogleScholarGoogle Scholar |
Rambaut, A. (2009). FigTree. (Version 1.4). Available from: http://tree.bio.ed.ac.uk/software/figtree/
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Tracer. (Version 1.7). Available from: http://beast.community/tracer
Ramos-Onsins, S. E., and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 2092–2100.
| Statistical properties of new neutrality tests against population growth.Crossref | GoogleScholarGoogle Scholar |
Reeves, J. M., Bostock, H. C., Ayliffe, L. K., Barrows, T. T., de Deckker, P., Devriendt, L. S., Dunbar, G. B., Drysdale, R. N., Fitzsimmons, K. E., Gagan, M. K., Griffiths, M. L., Haberle, S. G., Jansen, J. D., Krause, C., Lewis, S., McGregor, H. V., Mooney, S. D., Moss, P., Nanson, G. C., Purcell, A., and van der Kaars, S. (2013). Palaeoenvironmental change in tropical Australasia over the last 30,000 years – a synthesis by the OZ-INTIMATE group. Quaternary Science Reviews 74, 97–114.
| Palaeoenvironmental change in tropical Australasia over the last 30,000 years – a synthesis by the OZ-INTIMATE group.Crossref | GoogleScholarGoogle Scholar |
Reside, A. E., VanDerWal, J., Phillips, B. L., Shoo, L. P., Rosauer, D. F., Anderson, B. J., Welbergen, J. A., Moritz, C., Ferrier, S., Harwood, T. D., and Williams, K. J. (2013). Climate change refugia for terrestrial biodiversity. National Climate Change Adaptation Research Facility, Gold Coast, Queensland.
Reside, A. E., Welbergen, J. A., Phillips, B. L., Wardell‐Johnson, G. W., Keppel, G., Ferrier, S., Williams, S. E., and Vanderwal, J. (2014). Characteristics of climate change refugia for Australian biodiversity. Austral Ecology 39, 887–897.
| Characteristics of climate change refugia for Australian biodiversity.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |
Rosauer, D. F., Blom, M., Bourke, G., Catalano, S., Donnellan, S., Gillespie, G., Mulder, E., Oliver, P. M., Potter, S., Pratt, R., Rabosky, D. L., and Moritz, C. (2016). Phylogeographic hotspots and conservation priorities: an example from the Top End of Australia. Biological Conservation 204, 83–93.
| Phylogeographic hotspots and conservation priorities: an example from the Top End of Australia.Crossref | GoogleScholarGoogle Scholar |
Sistrom, M. J., Hutchinson, M. N., Hutchinson, R. G., and Donnellan, S. C. (2009). Molecular phylogeny of Australian Gehyra (Squamata: Gekkonidae) and taxonomic revision of Gehyra variegata in south-eastern Australia. Zootaxa 2277, 14–32.
Smith, K. L., Harmon, L. J., Shoo, L. P., and Melville, J. (2011). Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evolution 65, 976–992.
| Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards.Crossref | GoogleScholarGoogle Scholar |
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar |
Stephens, M., and Donnelly, P. (2003). A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics 73, 1162–1169.
| A comparison of Bayesian methods for haplotype reconstruction from population genotype data.Crossref | GoogleScholarGoogle Scholar |
Stephens, M., Smith, N., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989.
| A new statistical method for haplotype reconstruction from population data.Crossref | GoogleScholarGoogle Scholar |
Sunnucks, P., and Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
| Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar |
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
Tonione, M. A., Fisher, R. N., Zhu, C., and Moritz, C. (2016). Deep divergence and structure in the tropical oceanic Pacific: a multilocus phylogeography of a widespread gekkonid lizard (Squamata: Gekkonidae: Gehyra oceanica). Journal of Biogeography 43, 268–278.
| Deep divergence and structure in the tropical oceanic Pacific: a multilocus phylogeography of a widespread gekkonid lizard (Squamata: Gekkonidae: Gehyra oceanica).Crossref | GoogleScholarGoogle Scholar |
Wilson, S., and Swan, G. (2017). ‘A Complete Guide to Reptiles of Australia.’ 5th edn. (New Holland: Sydney.)
Woinarski, J., Mackey, B., Nix, H., and Traill, B. (2007). ‘The Nature of Northern Australia: Natural Values, Ecological Processes and Future Prospects.’ (The Australian National University E Press: Canberra.)