Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

The aerodynamic performance of the feathertail glider, Acrobates pygmaeus (Marsupialia: Acrobatidae)

Peter A. Pridmore A C and Peter H. Hoffmann B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Management and Ecology, Albury–Wodonga Campus, La Trobe University, PO Box 821, Wodonga, Vic. 3689, Australia.

B Engineers Australia, Engineering House, Level 2, 21 Bedford Street, North Melbourne, Vic. 3051, Australia.

C Corresponding author. Email: p.pridmore@latrobe.edu.au

Australian Journal of Zoology 62(1) 80-99 https://doi.org/10.1071/ZO13071
Submitted: 2 September 2013  Accepted: 22 April 2014   Published: 21 May 2014

Abstract

Photographic and videographic investigations of the aerodynamic performance of four captive adult Acrobates pygmeus are described. During short (1–4 m) glides, steep angles of descent (>45°) and large angles of attack (up to 50°) were used mid-flight, and the possums failed to achieve steady velocities. During longer (>10 m) glides steady velocities of 5.3–7.5 m s–1 were achieved, and glide angles of 21–42° and angles of attack between 36° and 45° were used. The best (lowest) glide angles used at steady velocity were similar to those documented in sugar gliders, but involved lower air speeds. During steady gliding the forelimbs of Acrobates assumed an ‘elbows-out’ disposition similar to that of Petauroides volans, and unlike that of petaurid gliders. A glide polar for Acrobates shows that it uses lower air speeds and higher sinking speeds than other gliding animals for which polars are available (several birds and one bat). Few data on the radius of turn and sinking speed were obtained; nevertheless, in accord with theory, sinking speeds were higher during tighter turns. During flight the feather-like tail was used to generate pitching movements and adjust the angle of attack and hence glide angle. However, the control of turns seems to be achieved primarily through limb adjustments.

Additional keywords: gliding, locomotion, marsupial.


References

Ando, M., and Shiraishi, S. (1993). Gliding flight in the Japanese giant flying squirrel Petaurista leucogenys. Journal of the Mammalogical Society of Japan 18, 19–32.

Aplin, K. P., and Archer, M. (1987). Recent advances in marsupial systematics with a new syncretic classification. In ‘Possums and Opossums: Studies in Evolution’. (Ed. M. Archer.) pp. xv–lxxii. (Surrey Beatty & the Royal Zoological Society of New South Wales: Sydney.)

Archer, M. (Ed.) (1987). ‘Possums and Opossums: Studies in Evolution’. (Surrey Beatty & the Royal Zoological Society of New South Wales: Sydney.)

Baverstock, P. R., Birrell, J., and Kreig, M. (1987). Albumin immunologic relationships among Australian possums: a progress report. In ‘Possums and Opossums: Studies in Evolution’. (Ed. M. Archer.) pp. 229–34. (Surrey Beatty & the Royal Zoological Society of New South Wales: Sydney.)

Baverstock, P. R., Birrell, J., and Kreig, M. (1989). Evolutionary relationships of Australian marsupials as assessed by albumin immunology. Australian Journal of Zoology 37, 273–287.
Evolutionary relationships of Australian marsupials as assessed by albumin immunology.Crossref | GoogleScholarGoogle Scholar |

Bishop, K. L. (2006). The relationship between 3-D kinematics and gliding performance in the southern flying squirrel, Glaucomys volans. The Journal of Experimental Biology 209, 689–701.
The relationship between 3-D kinematics and gliding performance in the southern flying squirrel, Glaucomys volans.Crossref | GoogleScholarGoogle Scholar | 16449563PubMed |

Bishop, K. L. (2007). Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps). The Journal of Experimental Biology 210, 2593–2606.
Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).Crossref | GoogleScholarGoogle Scholar | 17644674PubMed |

Brazenor, C. W. (1950). ‘The Mammals of Victoria.’ (Brown, Prior, Anderson Pty Ltd: Melbourne.)

Craddock, S. (1989). Aerodynamic study of the Australian feathertail glider. B.Eng. Thesis, The Royal Melbourne Institute of Technology University.

Fanning, D. F., and Watkins, K. (1980). Growth and development in Acrobates pygmaeus (Burramyidae: Marsupialia). Australian Mammalogy 3, 57–60.

Flaherty, E. A. (2002). Locomotor performance and cost of transport in the squirrel glider, Petaurus norfolcensis (Petauridae). M.Nat.Sci. Thesis, Southeast Missouri State University, USA.

Flaherty, E. A., Scheibe, J. S., and Goldingay, R. (2008). Locomotor performance in the squirrel glider, Petaurus norfolcensis, and the sugar glider, Petaurus breviceps. Australian Mammalogy 30, 25–35.

Flannery, T. F. (1990). ‘The Mammals of New Guinea.’ (Robert Brown & Associates: Brisbane.)

Flannery, T. F. (1994). ‘Possums of the World.’ (GEO Productions: Sydney.)

Fleay, D. (1947). ‘Gliders of the Gum Trees.’ (Bread and Cheese Club: Melbourne.)

Galvao, R., Israeli, E., Song, A., Tian, X., Bishop, K., Schwartz, K. and Brueur, K. (2006). The aerodynamics of compliant membrane wings modelled on mammalian flight mechanics. AIAA paper 2006–2866, 36th AIAA Fluid Dynamics Conference and Exhibit, June 5–8, 2006, San Francisco, California.

Goldingay, R. L. (2000). Gliding mammals of the world: diversity and ecological requirements. In ‘Biology of Gliding Mammals’. (Eds R. L. Goldingay and J. S. Scheibe.) pp. 9–44. (FilanderVerlag: Fürth.)

Goldingay, R.L. and Jackson, S.M. (2004). ‘The Biology of Australian Possums and Gliders.’ (Surrey Beatty: Sydney.)

Goldingay, R. L., and Kavanagh, R. P. (1988). Detectability of the feathertail glider, Acrobates pygmaeus (Marsupialia: Burramyidae), in relation to measured weather variables. Australian Mammalogy 11, 67–70.

Goldingay, R. L., and Taylor, B. D. (2009). Gliding performance and its relevance to gap crossing by the squirrel glider (Petaurus norfolcensis). Australian Journal of Zoology 57, 99–104.
Gliding performance and its relevance to gap crossing by the squirrel glider (Petaurus norfolcensis).Crossref | GoogleScholarGoogle Scholar |

Harris, J. M., and Maloney, K. S. (2010). Petauroides volans (Diprotodonta: Pseudocheiridae). Mammalian Species 42, 207–219.
Petauroides volans (Diprotodonta: Pseudocheiridae).Crossref | GoogleScholarGoogle Scholar |

Henry, S. (1987). Hanging on to the sweet life. Geo – Australia’s Geographical Magazine 9, 104–116.

Hildebrand, M. (1974). ‘Analysis of Vertebrate Structure.’ (John Wiley & Sons: New York.)

Iskov, M. C. (2011). Habitat characterisation of the genus Acrobates (Marsupialia: Acrobatidae) in relation to climate and vegetation. B.Sc.(Honours) Thesis, La Trobe University, Wodonga.

Jackson, S. M. (2000). Glide angle in the genus Petaurus and a review of gliding in mammals. Mammal Review 30, 9–30.
Glide angle in the genus Petaurus and a review of gliding in mammals.Crossref | GoogleScholarGoogle Scholar |

Jackson, S. M. (2012). ‘Gliding Mammals of the World.’ (CSIRO Publishing: Melbourne.)

Johnson-Murray, J. L. (1987). The comparative myology of the gliding membranes of Acrobates, Petauroides and Petaurus contrasted with the cutaneous myology of Hemibelideus and Pseudocheirus (Marsupialia: Phalangeridae) and with selected gliding Rodentia (Sciuridae and Anomaluridae). Australian Journal of Zoology 35, 101–113.
The comparative myology of the gliding membranes of Acrobates, Petauroides and Petaurus contrasted with the cutaneous myology of Hemibelideus and Pseudocheirus (Marsupialia: Phalangeridae) and with selected gliding Rodentia (Sciuridae and Anomaluridae).Crossref | GoogleScholarGoogle Scholar |

Meredith, R. W., Westerman, M., and Springer, M. S. (2009). A phylogeny of Diprotodontia (Marsupialia) based on sequences of five nuclear genes. Molecular Phylogenetics and Evolution 51, 554–571.
A phylogeny of Diprotodontia (Marsupialia) based on sequences of five nuclear genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslajs7Y%3D&md5=81d2ec38df8232369235e334b725ed48CAS | 19249373PubMed |

Morecombe, M.K. (1974). ‘Mammals of Australia.’ (Reed Books: Sydney.)

Nachtigall, W. (1979a). Gleitflug des Flugbeutlers Petaurus breviceps papuanus. II. Filmanalysen zur Einstellung von Gleitbahn und Rumpfsowiezur Steuerung des Gleitflugs. Journal of Comparative Physiology 133, 89–95.
Gleitflug des Flugbeutlers Petaurus breviceps papuanus. II. Filmanalysen zur Einstellung von Gleitbahn und Rumpfsowiezur Steuerung des Gleitflugs.Crossref | GoogleScholarGoogle Scholar |

Nachtigall, W. (1979b). Gleitflug des Flugbeutlers Petaurus breviceps papuanus. III. Modelmessungenzum Einfluss des Fellbesatzes auf Umströmung und Luftkrafterzeugung. Journal of Comparative Physiology 133, 339–349.
Gleitflug des Flugbeutlers Petaurus breviceps papuanus. III. Modelmessungenzum Einfluss des Fellbesatzes auf Umströmung und Luftkrafterzeugung.Crossref | GoogleScholarGoogle Scholar |

Nachtigall, W., Grosch, R., and Schultze-Westrum, T. (1974). Gleitflug des Flugbeutlers Petaurus breviceps papuanus (Thomas). I. Flugverhalten und Flugsteuerung. Journal of Comparative Physiology 92, 105–115.
Gleitflug des Flugbeutlers Petaurus breviceps papuanus (Thomas). I. Flugverhalten und Flugsteuerung.Crossref | GoogleScholarGoogle Scholar |

Norberg, U. M. (1985). Flying, gliding and soaring. In ‘Functional Vertebrate Morphology’. (Eds M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake.) pp. 129–158. (Belknap Press: London.)

Norberg, U. M. (1990). ‘Vertebrate Flight.’ (Springer-Verlag: Berlin.)

Oliver, J. A. (1951). “Gliding” in amphibians and reptiles, with a remark on an arboreal adaptation in the lizard Anolis carolinensis Voigt. American Naturalist 85, 171–176.
“Gliding” in amphibians and reptiles, with a remark on an arboreal adaptation in the lizard Anolis carolinensis Voigt.Crossref | GoogleScholarGoogle Scholar |

Osborne, M. J., and Christidis, L. (2001). Molecular phylogenetics of the Australo-Papuan possums and gliders (family Petauridae). Molecular Phylogenetics and Evolution 20, 211–224.
Molecular phylogenetics of the Australo-Papuan possums and gliders (family Petauridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFSnsrg%3D&md5=0fe19ba4fd3186d4599ded56b2234251CAS | 11476630PubMed |

Pennycuick, C. J. (1968). A wind-tunnel study of gliding flight in the pigeon Columba livia. The Journal of Experimental Biology 49, 509–526.

Pennycuick, C. J. (1971a). Gliding flight in the white-backed vulture Gyps africanus. The Journal of Experimental Biology 55, 13–38.

Pennycuick, C. J. (1971b). Gliding flight of the dog-faced bat Rousettus aegyptiacus observed in a wind tunnel. The Journal of Experimental Biology 55, 833–845.

Pennycuick, C. J. (1972). ‘Animal Flight.’ (Edward Arnold: London.)

Phillips, M. J., and Pratt, R. C. (2008). Family-level relationships among the Australian marsupial “herbivores” (Diprotodontia: koala, wombats, kangaroos and possums). Molecular Phylogenetics and Evolution 46, 594–605.
Family-level relationships among the Australian marsupial “herbivores” (Diprotodontia: koala, wombats, kangaroos and possums).Crossref | GoogleScholarGoogle Scholar | 17959392PubMed |

Pollitt, C., and Pollitt, S. (1988). The private lives of feathertail gliders. Wildlife Australia 25, 8–11.

Polyakova, R. S., and Sokolov, A. S. (1965). Structure of the locomotor organs in the volant squirrel Pteromys volans L. in relation to its plane flight. Zoologocheskiizhural 44, 902–916.

Rayner, J. (1981). Flight adaptations in vertebrates. Symposia of the Zoological Society of London 48, 137–172.

Russell, R. (1980). ‘Spotlight on Possums.’ (University of Queensland Press: Brisbane.)

Russell, R. (1983a). Yellow-bellied glider, Petaurus australis. In ‘Complete Book of Australian Mammals’. (Ed. R. Strahan.) pp. 136–137. (Angus & Robertson: Sydney.)

Russell, R. (1983b). Feathertail glider, Acrobates pygmaeus. In ‘Complete Book of Australian Mammals’. (Ed. R. Strahan.) pp. 170–171. (Angus & Robertson: Sydney.)

Scholey, K. D. (1986). The climbing and gliding locomotion of the giant red flying squirrel Petaurista petaurista (Sciuridae). In ‘Biona Report 5: Bat Flight – Fledermausflug’. (Ed. W. Nachtigall.) pp. 187–204. (Gustav Fischer: Stuttgart.)

Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, K., and Breuer, K. (2008). The aeromechanics of low aspect ratio compliant membrane wings, with applications to animal flight. AIAA Journal 46, 2096–2106.
The aeromechanics of low aspect ratio compliant membrane wings, with applications to animal flight.Crossref | GoogleScholarGoogle Scholar |

Stafford, B. J., Thorington, R. W.,, and Kawamichi, T. (2002). Gliding behaviour of Japanese giant flying squirrels (Petaurista leucogenys). Journal of Mammalogy 83, 553–562.
Gliding behaviour of Japanese giant flying squirrels (Petaurista leucogenys).Crossref | GoogleScholarGoogle Scholar |

Strahan, R. (1983). Ringtails and larger gliders. In ‘Complete Book of Australian Mammals’. (Ed. R. Strahan.) pp. 124–125. (Angus & Robertson: Sydney.)

Strahan, R. (1987). ‘What Mammal is That?’ (Angus & Robertson: Sydney.)

Thorington, R. W.,, and Heaney, L. R. (1981). Body proportions and gliding adaptations of flying squirrels (Petauristinae). Journal of Mammalogy 62, 101–114.
Body proportions and gliding adaptations of flying squirrels (Petauristinae).Crossref | GoogleScholarGoogle Scholar |

Troughton, E. LeG. (1957). ‘Furred Animals of Australia.’ 6th edn. (Angus & Robertson: Sydney.)

Tucker, V. A. (1987). Gliding birds: the effect of variable wing span. The Journal of Experimental Biology 133, 33–58.

Vernon, J. E. N. (1966). Studies on the behaviour and evolution of gliding in Schoinobates volans (Kerr) and other marsupial gliders. B.Sc.(Honours) Thesis, The University of New England, Armidale.

Wakefield, N. A. (1970). Notes on the glider-possum, Petaurus australis (Phalangeridae, Marsupialia). Victorian Naturalist 87, 221–236.

Ward, S (1998). Feathertail gliders. Australia Nature 25, 24–31.

Ward, S. J. (1990). Life history of the feathertail glider, Acrobates pygmaeus (Acrobatidae: Marsupialia) in south-eastern Australia. Australian Journal of Zoology 38, 503–517.
Life history of the feathertail glider, Acrobates pygmaeus (Acrobatidae: Marsupialia) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Welch, A., Welch, L., and Irving, L. (1995). ‘The Soaring Pilot.’ (Murray: London.)

Woodside, D. P. (1995). Feathertail Glider, Acrobates pygmaeus. In ‘The Mammals of Australia’. (Ed. R. Strahan.) pp. 262–264. (Reed Books: Sydney.)