Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Abnormal development in embryos and hatchlings of the Australian lungfish, Neoceratodus forsteri, from two reservoirs in south-east Queensland

Anne Kemp
+ Author Affiliations
- Author Affiliations

Environmental Futures Centre, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia. Email: a.kemp@griffith.edu.au

Australian Journal of Zoology 62(1) 63-79 https://doi.org/10.1071/ZO13038
Submitted: 9 May 2013  Accepted: 7 October 2013   Published: 11 November 2013

Abstract

Few of the localities currently inhabited by the Australian lungfish, Neoceratodus forsteri, are in pristine condition. Most populations of wild lungfish in south-east Queensland are now isolated in reservoirs. The barriers formed by the building of dams and weirs across natural rivers separate lungfish groups from each other, cut across possible pathways for normal movement in the environment, and have additional and more serious effects. Water levels in reservoirs fluctuate in spring when lungfish are spawning, and do not allow dense stands of submerged aquatic plants to become established. Lungfish need these plants as sites for oviposition, and newly hatched young need them as refuges and sources of food. Potential recruitment of young lungfish in reservoir populations faces another threat, that of anomalous development of the embryos, hatchlings and juveniles, severe enough to kill many embryos within days of oviposition, and destroy the young fish before they are more than a few months old. Similar anomalies are not present in young fish from a river environment raised under identical conditions. Reasons for poor development, which has now been found in two reservoirs, may be related to the diet of the adult lungfish, and possibly to genetic factors.

Additional keywords: anomalous development, failure to thrive, spawning in reservoirs.


References

Bancroft, T. L. (1912). On a weak point in the life history of Neoceratodus forsteri, Krefft. Proceedings of the Royal Society of Queensland 23, 251–256.

Bancroft, T. L. (1918). Some further notes on the life-history of Ceratodus forsteri. Proceedings of the Royal Society of Queensland 30, 91–94.

Bancroft, T. L. (1928). On the life-history of Ceratodus. Proceedings of the Linnean Society of New South Wales 53, 315–317.

Bemis, W. E., and Northcutt, G. R. (1992). Skin and blood vessels of the snout of the Australian lungfish, and their significance for interpreting the cosmine of Devonian lungfishes. Acta Zoologica 73, 115–139.
Skin and blood vessels of the snout of the Australian lungfish, and their significance for interpreting the cosmine of Devonian lungfishes.Crossref | GoogleScholarGoogle Scholar |

Bennett, W. R., Edmondson, G., Lane, E. D., and Morgan, J. (2005). Juvenile white sturgeon (Acipenser transmontanus) habitat and distribution in the Lower Fraser River, downstream of Hope, BC, Canada. Journal of Applied Ichthyology 21, 375–380.
Juvenile white sturgeon (Acipenser transmontanus) habitat and distribution in the Lower Fraser River, downstream of Hope, BC, Canada.Crossref | GoogleScholarGoogle Scholar |

Cavin, L., and Kemp, A. (2011). The impact of fossils on the evolutionary distinctiveness and conservation status of the Australian lungfish. Biological Conservation 144, 3140–3142.
The impact of fossils on the evolutionary distinctiveness and conservation status of the Australian lungfish.Crossref | GoogleScholarGoogle Scholar |

Davie, P., Stock, E., and Low Choy, D. (1990). ‘The Brisbane River: a Sourcebook for the Future.’ (Australian Littoral Society and Queensland Museum: Brisbane.)

Duke, P., Anders, E. G., Hallock, R., Hammond, J., Ireland, J., Laufle, J., Lauzier, R., Lockhard, L., Marotz, B., Paragamian, V. L., and Westerhof, R. (1999). Recovery plan for Kootenai River white sturgeon (Acipenser transmontanus) . Journal of Applied Ichthyology 15, 157–163.
Recovery plan for Kootenai River white sturgeon (Acipenser transmontanus) .Crossref | GoogleScholarGoogle Scholar |

Frentiu, F. D., Ovenden, J. R., and Street, R. (2001). Australian lungfish (Neoceratodus forsteri: Dipnoi) have low genetic variation at allozyme and mitochondrial DNA loci: a conservation alert? Conservation Genetics 2, 63–67.
Australian lungfish (Neoceratodus forsteri: Dipnoi) have low genetic variation at allozyme and mitochondrial DNA loci: a conservation alert?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsl2gu7c%3D&md5=c735831dbc25a703ae9684ea4f222363CAS |

Furuita, H., Ohta, H., Unuma, T., Tanaka, H., Kagawa, H., Suzuki, N., and Yamamoto, N. (2003). Biochemical composition of eggs in relation to egg quality in the Japanese eel, Anguilla japonica. Fish Physiology and Biochemistry 29, 37–46.
Biochemical composition of eggs in relation to egg quality in the Japanese eel, Anguilla japonica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFCgurw%3D&md5=db476a2a565d0f4356aee19660801548CAS |

Gauldie, J. W., Dunlop, D., and Tse, J. (1986). The remarkable lungfish otolith. New Zealand Journal of Marine and Freshwater Research 20, 81–92.
The remarkable lungfish otolith.Crossref | GoogleScholarGoogle Scholar |

James, K. M., Fallon, S. J., McDougall, A., Espinoza, T., and Broadfoot, C. (2010). Assessing the potential for radiocarbon dating the scales of Australian lungfish (Neoceratodus forsteri). Radiocarbon 52, 1084–1089.
| 1:CAS:528:DC%2BC3cXhtFyhs7vL&md5=bb5fd8694b38c17e121cfd0dc8fc4811CAS |

Kellicott, W. E. (1905). The development of the vascular and respiratory systems of Ceratodus. Memoirs of the New York Academy of Science 2, 131–250.

Kemp, A. (1977). The pattern of tooth plate formation in the Australian lungfish, Neoceratodus forsteri (Krefft). Zoological Journal of the Linnean Society 60, 223–258.
The pattern of tooth plate formation in the Australian lungfish, Neoceratodus forsteri (Krefft).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (1981). Rearing of embryos and larvae of the Australian lungfish, Neoceratodus forsteri (Krefft) under laboratory conditions. Copeia 1981, 776–784.
Rearing of embryos and larvae of the Australian lungfish, Neoceratodus forsteri (Krefft) under laboratory conditions.Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (1982). The embryological development of the Queensland lungfish, Neoceratodus forsteri (Krefft). Memoirs of the Queensland Museum 20, 553–597.

Kemp, A. (1984). Spawning of the Australian lungfish, Neoceratodus forsteri (Krefft) in the Brisbane River and in Enoggera Reservoir, Queensland. Memoirs of the Queensland Museum 21, 391–399.

Kemp, A. (1987). The Biology of the Australian lungfish, Neoceratodus forsteri. Journal of Morphology 1, 181–198.

Kemp, A. (1994). Pathology in eggs and embryos of Neoceratodus forsteri. (Osteichthyes: Dipnoi). Copeia 1994, 935–943.
Pathology in eggs and embryos of Neoceratodus forsteri. (Osteichthyes: Dipnoi).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (1995). Threatened fishes of the world: Neoceratodus forsteri (Krefft 1870) (Neoceratodontidae). Environmental Biology of Fishes 43, 310.
Threatened fishes of the world: Neoceratodus forsteri (Krefft 1870) (Neoceratodontidae).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (1996). The role of epidermal cilia in development of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Journal of Morphology 228, 203–221.
The role of epidermal cilia in development of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (1999). Ontogeny of the skull of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Journal of Zoology 248, 97–137.
Ontogeny of the skull of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (2002). The marginal dentition of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Journal of Zoology 257, 325–331.
The marginal dentition of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (2003a). Ultrastructure of developing tooth plates in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Tissue & Cell 35, 401–426.
Ultrastructure of developing tooth plates in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (2003b). Anomalies in the developing chondral and visceral skeleton of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Annals of Anatomy 185, 121–134.
Anomalies in the developing chondral and visceral skeleton of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).Crossref | GoogleScholarGoogle Scholar | 12725436PubMed |

Kemp, A. (2005). New insights into ancient environments using dental characters in Australian Cainozoic lungfish. Alcheringa 29, 123–149.
New insights into ancient environments using dental characters in Australian Cainozoic lungfish.Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (2011). Comparison of embryological development in the threatened Australian lungfish Neoceratodus forsteri from two sites in a Queensland River system. Endangered Species Research 15, 87–101.
Comparison of embryological development in the threatened Australian lungfish Neoceratodus forsteri from two sites in a Queensland River system.Crossref | GoogleScholarGoogle Scholar |

Kemp, A. (2012). ‘The World of Lungfish.’ (Andrachne Press: Brisbane.)

Kerr, J. G. (1909). Normal plates of the development of Lepidosiren paradoxa and Protopterus annectens. In ‘Normentafeln zur Entwicklungsfeschichte der Wirbeltiere’. (Ed. F. Keibel.) pp. 1–27. (Gustav Fischer: Jena.)

Kind, P. K. (2011). The natural history of the Australian lungfish Neoceratodus forsteri (Krefft 1870). In ‘The Biology of Lungfishes’. (Eds J. M. Jorgensen, and J. Joss.) pp. 61–96. (CRC Press: Enfield, NH.)

Lissone, I. (2003). Conservation genetics and the Australian lungfish Neoceratodus forsteri (Krefft 1870); a spatio-temporal study of population structure. M.Sc. Thesis, The University of the Sunshine Coast, Sippy Downs, Queensland.

Longman, H. (1928). Discovery of juvenile lungfishes with notes on Epiceratodus. Memoirs of the Queensland Museum 9, 161–173.

Martinez, I., Alvarez, R., Herraez, I., and Herraez, P. (1992). Skeletal malformations in hatchery reared Rana perezi tadpoles. The Anatomical Record 233, 314–320.
Skeletal malformations in hatchery reared Rana perezi tadpoles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383ps1erug%3D%3D&md5=83e4b8db4d32b6118881d7c4475d21ecCAS | 1605395PubMed |

Miller, A. E. (1923). The cleavage of the egg of Lepidosiren paradoxa. The Quarterly Journal of Microscopical Science 67, 497–505.

Peleteiro, J. B., Lavens, P., Rodriguez-Ojea, G., and Inglesias, J. (1995). Relationship between egg quality and fatty acid content of various turbot broodstocks (Scophthalmus maximus L.). ICES Marine Science Symposia 201, 51–56.

Razzell, W. E. (1990). Water supply. In ‘The Brisbane River: a Sourcebook for the Future’. (Eds P. Davie, E. Stock, and D. Low Choy.) pp. 212–216. (Australian Littoral Society and Queensland Museum: Brisbane.)

Retzius, G. (1881). ‘Das Gehörorgan der Wirbelthiere. Morphologisch-histologische Studien. I. Das Gehörorgan der Fische und Amphibien.’ (Centraldruckerei: Stockholm.)

Rowe, C. I., Kinney, M. K., and Congdon, J. D. (1998). Oral deformities in tadpoles of the bullfrog (Rana catesbiana) caused by conditions in a polluted habitat. Copeia 1998, 244–246.
Oral deformities in tadpoles of the bullfrog (Rana catesbiana) caused by conditions in a polluted habitat.Crossref | GoogleScholarGoogle Scholar |

Semon, R. (1893). Die äussere Entwickelung des Ceratodus forsteri. Denkschriften der Medizinisch-Naturwissenschaftlichen Gesellschaft zu Jena 4, 29–50.

Semon, R. (1899). ‘In the Australian Bush and on the Coast of the Coral Sea, being the Experiences and Observations of a Naturalist in Australia, New Guinea and the Moluccas.’ (Macmillan and Co: London.)

Whiting, H. P., and Bone, Q. (1980). Ciliary cells in the epidermis of the larval Australian dipnoan, Neoceratodus. Zoological Journal of the Linnean Society 68, 125–137.
Ciliary cells in the epidermis of the larval Australian dipnoan, Neoceratodus.Crossref | GoogleScholarGoogle Scholar |

Wikelski, M., and Cooke, S. J. (2006). Conservation physiology. Trends in Ecology & Evolution 21, 38–46.
Conservation physiology.Crossref | GoogleScholarGoogle Scholar |