Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Comparative sensitivities of larval stages of the cane toad, Rhinella marina, and the striped marsh frog, Limnodynastes peronii, to atrazine

Khurshida Akter Siddiqua A C , Ralph Alquezar B and Scott Paton Wilson A
+ Author Affiliations
- Author Affiliations

A School of Medical and Applied Sciences, Central Queensland University, Gladstone, Qld 4680, Australia.

B Vision Environment Queensland, PO Box 1267, Gladstone, Qld 4680, Australia.

C Corresponding author. Email: kasiddiqua@windowslive.com

Australian Journal of Zoology 61(4) 320-327 https://doi.org/10.1071/ZO13001
Submitted: 3 January 2013  Accepted: 21 August 2013   Published: 18 September 2013

Abstract

Variations in larval sensitivities to atrazine were determined in the Australian native striped marsh frog, Limnodynastes peronii, and the introduced cane toad, Rhinella marina. The static acute test design involved six nominal concentrations of atrazine, including control, solvent control, 3, 6, 12, and 24 mg L–1. Gosner stages 22–23 as hatchlings, stages 25–26, 28–29, and 32–33 as premetamorphic, 36–37 as prometamorphic and 40–41 as metamorphic climax stages of cane toads and the first four sets of Gosner stages of striped marsh frogs were exposed to atrazine treatments for 96 h. Results showed that late larval stages were more sensitive than early stages and different premetamorphic stages showed variations in sensitivities in both test species. The striped marsh frog showed a stronger concentration- and stage-dependent response and greater sensitivity to atrazine than the cane toad. In both experimental species, Gosner stages 28–29 showed better concentration-dependent increase in sensitivities to atrazine compared with other larval stages. It can be concluded that inter- and intra-species variations in sensitivities to atrazine may occur in Australian anurans and native species may show greater sensitivity to acute concentrations of atrazine than the introduced cane toad.

Additional keywords: Australian anurans, herbicide, inter- and intra-species, susceptibility.


References

Allran, J. W., and Karasov, W. H. (2001). Effects of atrazine and embryos, larvae and adults of anuran amphibians. Environmental Toxicology and Chemistry 20, 769–775.
Effects of atrazine and embryos, larvae and adults of anuran amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslWis74%3D&md5=6425b0b777768d5d19f0c3f82454ad3dCAS | 11345452PubMed |

APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environment Federation) (2005). Standard methods for the examination of water and wastewater. Washington DC, USA.

APVMA (Australian Pesticides and Veterinary Medicines Authority) (2008). Technical Report – Atrazine: The reconsideration of the active constituent, registration of products containing atrazine and approvals of their associated labels. Australian Pesticides and Veterinary Medicines Authority, Kingston, Act 2604, Australia.

ASTM (American Society for Testing and Materials) (2007). Standard Guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. In ‘Annual Book of ASTM Standards’. Vol. 11.06. (ASTM International: West Conshohocken, PA, USA.)

Battelle (2004). Draft detailed review paper for Amphibian Growth and Reproduction Assay (Tier 2). EPA Contract No. 68-W-01-023, work assignment 4–8 March 2004, Columbus, Ohio.

Brodeur, J. C., Svartz, G., Perez-Coll, C. S., Marino, D. J. G., and Herkovits, J. (2009). Comparative susceptibility to atrazine of three developmental stages of Rhinella arenarum and influence on metamorphosis: non-monotonous acceleration of the time to climax and delayed tail resorption. Aquatic Toxicology (Amsterdam, Netherlands) 91, 161–170.
Comparative susceptibility to atrazine of three developmental stages of Rhinella arenarum and influence on metamorphosis: non-monotonous acceleration of the time to climax and delayed tail resorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlymtA%3D%3D&md5=3f574d24fdc5bbd38eba67f01b03a36eCAS |

Brodkin, M. A., Madhoun, H., Rameswaran, M., and Vatnick, I. (2007). Atrazine is an immune disruptor in adult northern leopard frogs (Rana pipiens). Environmental Toxicology and Chemistry 26, 80–84.
Atrazine is an immune disruptor in adult northern leopard frogs (Rana pipiens).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGnsg%3D%3D&md5=f9b4193bea895237e37814a8c38cfb0cCAS | 17269463PubMed |

Carr, J. A., Gentles, A., Smith, E. E., Goleman, W. L., Urquidi, L. J., Thuett, K., Kendall, R. J., Giesy, J. P., Gross, T. S., Solomon, K. R., and Van Der Kraak, G. (2003). Response of larval Xenopus laevis to atrazine: assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environmental Toxicology and Chemistry 22, 396–405.
| 1:CAS:528:DC%2BD3sXntVeksQ%3D%3D&md5=113f540ac0bd41c7996eeae38618dfc6CAS | 12558173PubMed |

Coady, K. K., Murphy, M. B., Villeneuve, D. L., Hecker, M., Jones, P. D., Carr, J. A., Solomon, K. R., Smith, E. E., Kraak, G. V. D., Kendall, R. J., and Giesy, J. P. (2005). Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. Ecotoxicology and Environmental Safety 62, 160–173.
Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1ahsbc%3D&md5=88b4a4824cfa0269046d54f64e262eb2CAS | 16112017PubMed |

Dodd, M. H., and Dodd, J. M. (1976). The biology of metamorphosis. In ‘Physiology of the Amphibia’. (Ed. B. Lofts.) pp. 467–599. (Academic Press: New York.)

Etkin, W. (1968). Hormonal control of amphibian metamorphosis. In ‘Metamorphosis’. (Eds W. Etkin and L. I. Gilbert.) pp. 313–348. (Meredith Corporation: New York.)

Fort, D. J., Rogers, R. L., Thomas, J. H., Buzzard, B. O., Noll, A. M., and Spaulding, C. D. (2004). Comparative sensitivity of Xenopus tropicalis and Xenopus laevis as test species for the FETAX model. Journal of Applied Toxicology 24, 443–457.
Comparative sensitivity of Xenopus tropicalis and Xenopus laevis as test species for the FETAX model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKmtbjP&md5=7fe686d128a615c4d4740f7ec21dc7f3CAS | 15551382PubMed |

Frost, D. R., Grant, T, Faivovich, J, Bain, R. H., Haas, A, Haddad, C. F. B., De Sa, R. O., Channing, A, Wilkinson, M, Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P, Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., and Wheeler, W. C. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History 297, 1–371.

Giddings, J. M., Anderson, T. A., Hall, L. W. Jr, Hosmer, A. J., Kendall, R. J., Richards, R. P., Solomon, K. R., and Williams, W. M. (2005). Atrazine in North American surface waters: a probabilistic aquatic ecological risk assessment. Society of Environmental Toxicology and Chemistry, Pensacola, USA

Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190.

Gubbins, M. J., Huet, M., Mann, R. M., and And Minier, C. (2012). Impairments of endocrine functions: case studies. In ‘Ecological Biomarkers: Indicators of Ecotoxicological Effects’. (Eds C. Amiard-Triquet, J. Amiard and P. S. Rainbow.) pp. 219 – 252. (CRC Press: Florida.)

Harris, M. L., Chora, L., Bishop, C. A., and Bogart, J. P. (2000). Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens, and Bufo americanus. Bulletin of Environmental Contamination and Toxicology 64, 263–270.
Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens, and Bufo americanus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlags78%3D&md5=5eeef3f9b7f17c9bd05fb3e523c9914fCAS | 10656894PubMed |

Hayes, T., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A. A., and Vonk, A. (2002). Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences of the United States of America 99, 5476–5480.
Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFKlsbc%3D&md5=21cb0359a6db4b9555f0fc61d6bd78cfCAS | 11960004PubMed |

Hayes, T. B., Khoury, V., Narayan, A., Nazir, M., Park, A., Brown, T., Adame, L., Chan, E., Buchholz, D., Stueve, T., and Gallipeau, S. (2010). Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proceedings of the National Academy of Sciences of the United States of America 107, 4612–4617.
Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1emurk%3D&md5=1ca653f1a3988915e54eea8dc6179bb1CAS | 20194757PubMed |

Howe, G. E., Gillis, R., and Mowbray, R. C. (1998). Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae. Environmental Toxicology and Chemistry 17, 519–525.
Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1yksb4%3D&md5=26a30cef8688f8bedff892df88526a51CAS |

Hyne, R. V., Spolyarich, N., Wilson, S. P., Patra, R. W., Byrne, M., Gordon, G., Sanchez-Bayo, F., and Palmer, C. G. (2009). Distribution of frogs in rice bays within an irrigated agricultural area: links to pesticide usages and farm practices. Environmental Toxicology and Chemistry 28, 1255–1265.
Distribution of frogs in rice bays within an irrigated agricultural area: links to pesticide usages and farm practices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWhtLg%3D&md5=548258a8634fd51e91cb95ad973660baCAS | 19220075PubMed |

Kloas, W., Lutz, I., Springer, T., Krueger, H., Wolf, J., Holden, L., and Hosmer, A. (2009). Does atrazine influence larval development and sexual differentiation in Xenopus laevis? Toxicological Sciences 107, 376–384.
Does atrazine influence larval development and sexual differentiation in Xenopus laevis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeht70%3D&md5=d5a2285562ddc6bf85a5cde90d33221bCAS | 19008211PubMed |

Landis, W. G., and Yu, M. (1999). ‘Introduction to Environmenal tOxicology: Impacts of Chemicals upon Ecological Systems.’ (CRC Press LLC: Florida.)

Lenkowski, J. R., Reed, J. M., Deininger, L., and McLaughlin, K. A. (2008). Perturbation of organogenesis by the herbicide atrazine in the amphibian Xenopus laevis. Environmental Health Perspectives 116, 223–230.
Perturbation of organogenesis by the herbicide atrazine in the amphibian Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislCltrY%3D&md5=b41820e3039179ccf7be284e9aa9ef29CAS | 18288322PubMed |

Mann, R. M. (2000). Toxicological impact of agricultural surfactants on Australian frogs. Ph.D. Thesis, School of Environmental Biology, Curtin University of Technology, Perth.

Mann, R. M., and Bidwell, J. R. (2001). The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environmental Pollution 114, 195–205.
The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslSgs7s%3D&md5=7f70abee421825bac4e753bea2998d9dCAS | 11504342PubMed |

McDiarmid, R. W., and Altig, R. (1999). ‘Tadpoles: The Biology of Anuran Larvae.’ (The University of Chicago Press: Chicago.)

Morgan, M. K., Scheuerman, P. R., Bishop, C. S., and Pyles, R. A. (1996). Teratogenic potential of atrazine and 2,4-D using FETAX. Journal of Toxicology and Environmental Health 48, 151–168.
Teratogenic potential of atrazine and 2,4-D using FETAX.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1ymurY%3D&md5=92e95a4fe32c13979a849495731a5523CAS | 8642623PubMed |

Murphy, M. B., Hecker, M., and Coady, K. K. (2006). Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquatic Toxicology 76, 230–245.
Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFKku7s%3D&md5=4fbb3502946aae2f4255dc6e806d63cbCAS | 16300839PubMed |

OECD (Organisation for Economic Co-operation and Development) (2009). OECD Guideline for the testing of chemicals: The Amphibian Metamorphosis Assay. OECD Series on Testing and Assessment, No. 231.

Oka, T., Tooi, O., Mitsui, N., Miyahara, M., Ohnishi, Y., Takase, M., Kashiwagi, A., Shinkai, T., Santo, N., and Iguchi, T. (2008). Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquatic Toxicology 87, 215–226.
Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslWqsrg%3D&md5=c2b38577c9aa84549424e8703edb62e4CAS | 18395276PubMed |

Rohr, J. R., Elskus, A. A., Shepherd, B. S., Crowley, P. H., McCarthy, T. M., Niedzwiecki, J. H., Sager, T., Sih, A., and Palmer, B. D. (2003). Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri). Environmental Toxicology and Chemistry 22, 2385–2392.
Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslKisrk%3D&md5=ff0183fb97be8bb4820b33fc1c43b9eaCAS | 14552003PubMed |

Shi, Y. B. (2000). ‘Amphibian Metamorphosis: from Morphology to Molecular Biology.’ (John Wiley & Sons Inc.: New York.)

Spolyarich, N., Hyne, R., Wilson, S., Palmer, C., and Byrne, M. (2010). Growth, development and sex ratios of spotted marsh frog (Limnodynastes tasmaniensis) larvae exposed to atrazine and a herbicide mixture. Chemosphere 78, 807–813.
Growth, development and sex ratios of spotted marsh frog (Limnodynastes tasmaniensis) larvae exposed to atrazine and a herbicide mixture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtValtLk%3D&md5=a1c69dc57e8a122f0568415b5e1e16b8CAS | 20044125PubMed |

Storrs, S. I., and Kiesecker, J. M. (2004). Survivorship patterns of larval amphibians exposed to low concentrations of atrazine. Environmental Health Perspectives 112, 1054–1057.
Survivorship patterns of larval amphibians exposed to low concentrations of atrazine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1agsLc%3D&md5=396c720ed85827bebeaa3c23e797e910CAS | 15238276PubMed |

Svartz, G. V., Herkovits, J., and Perez-Coll, C. S. (2012). Sublethal effects of atrazine on embryo-larval development of Rhinella arenarum (Anura: Bufonidae). Ecotoxicology 21, 1251–1259.
Sublethal effects of atrazine on embryo-larval development of Rhinella arenarum (Anura: Bufonidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFCjtbk%3D&md5=15f500ac656ead4b590079841d2be64fCAS | 22419132PubMed |

Tavera-Mendoza, L., Ruby, S., Brousseau, P., Fournier, M., Cyr, D., and Marcoglieses, D. (2002a). Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the testis. Environmental Toxicology and Chemistry 21, 527–531.
| 1:CAS:528:DC%2BD38XhvVehsrY%3D&md5=3721709b408799797f1f67f0e9ab363bCAS | 11878466PubMed |

Tavera-Mendoza, L., Ruby, S., Brousseau, P., Fournier, M., Cyr, D., and Marcoglieses, D. (2002b). Response of the amphibian tadpole Xenopus laevis to atrazine during sexual differentiation of the ovary. Environmental Toxicology and Chemistry 21, 1264–1267.
| 1:CAS:528:DC%2BD38XktlerurY%3D&md5=489e949dc542584f3cd9dd7a5a7c4d8dCAS | 12069312PubMed |

Tyler, M. J. (1994). ‘Australian Frogs: A Natural History.’ (Reed Books: Sydney.)

Withgott, J. (2002). Amphibian decline. ubiquitous herbicide emasculates frogs. Science 296, 447–448.
Amphibian decline. ubiquitous herbicide emasculates frogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFagurY%3D&md5=5a88f06b063761a4caa82de96ed0dbf4CAS | 11964448PubMed |

Zaya, R. M., Amini, Z., Whitaker, A. S., Kohler, S. L., and Ide, C. F. (2011). Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles. Aquatic Toxicology 104, 243–253.
Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitb0%3D&md5=ef84a1aa3940d3a4c2e2515b0ce48fd4CAS | 21635867PubMed |