Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Identifying key denning habitat to conserve brown bear (Ursus arctos) in Croatia

A. Whiteman A B G , G. Passoni C , J. M. Rowcliffe D , D. Ugarković E , J. Kusak F , S. Reljić F and D. Huber F
+ Author Affiliations
- Author Affiliations

A Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK.

B Present address: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 2901 University City Blvd, Charlotte, NC 28223, USA.

C Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK.

D ZSL Institute of Zoology, Regent’s Park, London NW1 4RY, UK.

E Faculty of Forestry, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia.

F Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia.

G Corresponding author. Email: awhitem1@uncc.edu

Wildlife Research 44(4) 309-315 https://doi.org/10.1071/WR16164
Submitted: 3 September 2016  Accepted: 6 May 2017   Published: 7 June 2017

Abstract

Context: The preservation of denning habitat is paramount to the recovery of threatened bear populations because of the effect that den site disturbance can have on cub mortality. Understanding habitat suitability for denning can allow management efforts to be directed towards the regions where conservation interventions would be most effective.

Aim: We sought to identify the environmental and anthropogenic habitat variables associated with the presence of Eurasian brown bear (Ursus arctos) den sites in Croatia. Based on these associations, in order to inform future conservation decisions, we also sought to identify regions of high suitability for denning across Croatia.

Methods: Using the locations of 91 dens inhabited by bears between 1982 and 2011, we opted for the presence-only modelling option in software Maxent to determine the most important predictors of den presence, and thus predict the distribution of high-value denning habitat across Croatia.

Key results: We found that structural elements were the most important predictors, with ruggedness and elevation both relating positively to den presence. However, distance to nearest settlement was also positively associated with den presence.

Conclusion: We determine that there is considerable denning habitat value in areas with high and rugged terrain as well as areas with limited human activity. We suspect that high and rugged terrain contains a greater concentration of the karstic formations used for denning than lower-lying regions.

Implications: Our study presents the first habitat suitability model for brown bears in Croatia, and identifies core areas suitable for denning both within and outside the species’ current range. As such, it provides useful evidence for conservation decision making and the development of scientifically-based management plans. Our results also support the need for finer spatial scale studies that can reveal specific denning preferences of subpopulations.

Additional keywords: conservation, habitat preference, habitat use, modelling.


References

Adler, G. H., and Wilson, M. L. (1987). Demography of a habitat generalist, the white-footed mouse, in a heterogeneous environment. Ecology 68, 1785–1796.
Demography of a habitat generalist, the white-footed mouse, in a heterogeneous environment.Crossref | GoogleScholarGoogle Scholar |

Aranda, S. C., and Lobo, J. M. (2011). How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography 34, 31–38.
How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora.Crossref | GoogleScholarGoogle Scholar |

Buršić, I., Lasan, I., Stolnik, G., Miler, V., Miloš, K., and Škrebenc, J. (2011). ‘Census of Population, Households and Dwellings 2011.’ (Croatian Bureau of Statistics: Zagreb, Croatia.)

Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A. (2011). Point pattern modelling for degraded presence-only data over large regions. Journal of the Royal Statistical Society: Series C (Applied Statistics) 60, 757–776.
Point pattern modelling for degraded presence-only data over large regions.Crossref | GoogleScholarGoogle Scholar |

Ciarniello, L. M., Boyce, M. S., Heard, D. C., and Seip, D. R. (2005). Denning behavior and den site selection of grizzly bears along the Parsnip River, British Columbia, Canada. Ursus 16, 47–58.
Denning behavior and den site selection of grizzly bears along the Parsnip River, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar |

Dečak, Đ., Frković, A., Grubešić, M., Huber, Đ., Iviček, B., and Kulić, B., Sertić, D., and Štahan, Ž. (2005). Brown bear management plan for the Republic of Croatia. Ministry of Agriculture, Forest and Water Management & Ministry of Culture. Zagreb, Croatia. Available at http://www1.nina.no/lcie_new/pdf/634986164067645008_Croatian bear action plan 2005.pdf [verified 18 May 2017].

Efron, B., and Stein, C. (1981). The Jackknife estimate of variance. Annals of Statistics 9, 586–596.
The Jackknife estimate of variance.Crossref | GoogleScholarGoogle Scholar |

Eigenbrod, F., Armsworth, P. R., Anderson, B. J., Heinemeyer, A., Gillings, S., Roy, D. B., Thomas, C. D., and Gatson, K. J. (2010). The impact of proxy-based methods on mapping the distribution of ecosystem services. Journal of Applied Ecology 47, 377–385.
The impact of proxy-based methods on mapping the distribution of ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Elfström, M., Swenson, J. E., and Ball, J. P. (2008). Selection of denning habitats by Scandinavian brown bears Ursus arctos. Wildlife Biology 14, 176–187.
Selection of denning habitats by Scandinavian brown bears Ursus arctos.Crossref | GoogleScholarGoogle Scholar |

Elith, J., and Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics 40, 677–697.
Species distribution models: ecological explanation and prediction across space and time.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity & Distributions 17, 43–57.
A statistical explanation of MaxEnt for ecologists.Crossref | GoogleScholarGoogle Scholar |

Evangelista, P. H., Kumar, S., Stohlgren, T. J., Jarnevich, C. S., Crall, A. W., Norman, J. B., and Barnett, D. T. (2008). Modelling invasion for a habitat generalist and a specialist plant species. Diversity & Distributions 14, 808–817.
Modelling invasion for a habitat generalist and a specialist plant species.Crossref | GoogleScholarGoogle Scholar |

Feilhauer, H., He, K. S., and Rocchini, D. (2012). Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI. Remote Sensing 4, 2057–2075.
Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI.Crossref | GoogleScholarGoogle Scholar |

Fielding, A. H., and Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38–49.
A review of methods for the assessment of prediction errors in conservation presence/absence models.Crossref | GoogleScholarGoogle Scholar |

Halvorsen, R. (2013). A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. Sommerfeltia 36, 1–132.
A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling.Crossref | GoogleScholarGoogle Scholar |

Higgins, S. I., O’Hara, R. B., and Römermann, C. (2012). A niche for biology in species distribution models. Journal of Biogeography 39, 2091–2095.
A niche for biology in species distribution models.Crossref | GoogleScholarGoogle Scholar |

Hosseini, S. Z., Kappas, M., Zare Chahouki, M. A., Gerold, G., Erasmi, S., and Rafiei Emam, A. (2013). Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics. Ecological Informatics 18, 61–68.
Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics.Crossref | GoogleScholarGoogle Scholar |

Huber, D., and Roth, H. U. (2009). Denning of Brown Bears in Croatia. International Conference on Bear Research and Management 9, 79–83.

Huber, D., Kusak, J., and Frkovic, A. (1995). Traffic kills of brown bears in Gorski Kotar, Croatia. Ursus 10, 167–171.
Traffic kills of brown bears in Gorski Kotar, Croatia.Crossref | GoogleScholarGoogle Scholar |

Huber, D., Kusak, J., Majić-Skrbinšek, A., Majnarić, D., and Sindičić, M. (2008). A multidimensional approach to managing the European brown bear in Croatia. Ursus 19, 22–32.
A multidimensional approach to managing the European brown bear in Croatia.Crossref | GoogleScholarGoogle Scholar |

Kaczensky, P., Chapron, G., von Arx, M., Huber, D., Andrén, H., and John, L. (2012). Status, management and distribution of large carnivores – bear, lynx, wolf & wolverine – in Europe. Available at http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/task_1_part2_species_country_reports.pdf [accessed 23 March 2015].

Kocijan, I., Galov, A., Ćetković, H., Kusak, J., Gomerčić, T., and Huber, Đ. (2011). Genetic diversity of Dinaric brown bears (Ursus arctos) in Croatia with implications for bear conservation in Europe. Mammalian Biology – Zeitschrift fur Saugetierkunde 76, 615–621.
Genetic diversity of Dinaric brown bears (Ursus arctos) in Croatia with implications for bear conservation in Europe.Crossref | GoogleScholarGoogle Scholar |

Koreň, M., Find’o, S., Skuban, M., and Kajba, M. (2011). Habitat suitability modelling from non-point data. Ecological Informatics 6, 296–302.
Habitat suitability modelling from non-point data.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Graham, J., West, A. M., and Evangelista, P. H. (2014). Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture 103, 55–62.
Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India.Crossref | GoogleScholarGoogle Scholar |

Kusak, J., and Huber, D. (1995). Brown bear habitat quality in Gorski Kotar Croatia. Ursus 10, 281–291.
Brown bear habitat quality in Gorski Kotar Croatia.Crossref | GoogleScholarGoogle Scholar |

Linnell, J. D. C., Swenson, J. E., Andersen, R., and Barnes, B. (2000). How vulnerable are denning bears to disturbance? Wildlife Society Bulletin 28, 400–413.

Majnarić, D. (2002). Gospodarenje medvjedom kao zadatak državnog šumarstva. Šumarski List Br. 11–12, 601–611.

Matyukhina, D. S., Miquelle, D. G., Murzin, A. A., Pikunov, D. G., Fomenko, P. V., Aramilev, V. V., Litvinov, M. N., Salkina, G. P., Seryodkin, I. V., Nikolaev, I. G., Kostyria, A. V., Gaponov, V. V., Yudin, V. G., Dunishenko, Y. M., Smirnov, E. N., Korkishko, V. G., and Marino, J. (2015). Assessing the influence of environmental parameters on Amur tiger distribution in the Russian Far East using a MaxEnt modeling approach. Achievements in the Life Sciences 8, 95–100.
Assessing the influence of environmental parameters on Amur tiger distribution in the Russian Far East using a MaxEnt modeling approach.Crossref | GoogleScholarGoogle Scholar |

Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., Mcmahon, S. M., Normand, S., Thuiller, W., Wüest, R. O., Zimmermann, N. E., and Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267–1281.
What do we gain from simplicity versus complexity in species distribution models?Crossref | GoogleScholarGoogle Scholar |

Nawaz, M. A., Martin, J., and Swenson, J. E. (2014). Identifying key habitats to conserve the threatened brown bear in the Himalaya. Biological Conservation 170, 198–206.
Identifying key habitats to conserve the threatened brown bear in the Himalaya.Crossref | GoogleScholarGoogle Scholar |

Passoni, G., Rowcliffe, J. M., Whiteman, A., Huber, D., and Kusak, J. (2017). Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia. European Journal of Wildlife Research 63, 38.
Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia.Crossref | GoogleScholarGoogle Scholar |

Pearce, J. L., and Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43, 405–412.
Modelling distribution and abundance with presence-only data.Crossref | GoogleScholarGoogle Scholar |

Petram, W., Knauer, F., and Kaczensky, P. (2004). Human influence on the choice of winter dens by European brown bears in Slovenia. Biological Conservation 119, 129–136.
Human influence on the choice of winter dens by European brown bears in Slovenia.Crossref | GoogleScholarGoogle Scholar |

Phillips, S. J., and Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.
Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation.Crossref | GoogleScholarGoogle Scholar |

Phillips, S., Dudík, M., and Schapire, R. (2004). A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning , 655–662.
A maximum entropy approach to species distribution modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksV2gs7k%3D&md5=f3ef93599baeba660cc9d88cbaf2caecCAS |

Saupe, E. E., Barve, V., Myers, C. E., Soberón, J., Barve, N., Hensz, C. M., Peterson, A. T., Owens, H. L., and Lira-Noriega, A. (2012). Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecological Modelling 237–238, 11–22.
Variation in niche and distribution model performance: the need for a priori assessment of key causal factors.Crossref | GoogleScholarGoogle Scholar |

Stephan, W. (2014). Continuity of the maximum-entropy inference. Communications in Mathematical Physics 330, 1263–1292.
Continuity of the maximum-entropy inference.Crossref | GoogleScholarGoogle Scholar |

Swenson, J. E., Sandegren, F., Brunberg, S., and Wabakken, P. (1997). Winter den abandonment by brown bears Ursus arctos: causes and consequences. Wildlife Biology 3, 35–38.

Torres, R., Pablo Jayat, J., and Pacheco, S. (2013). Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the Maned Wolf (Chrysocyon brachyurus). Mammalian Biology 78, 41–49.
Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the Maned Wolf (Chrysocyon brachyurus).Crossref | GoogleScholarGoogle Scholar |

Townsend Peterson, A., Papeş, M., and Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560.
Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent.Crossref | GoogleScholarGoogle Scholar |

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., and Kadmon, R. (2007). A comparative evaluation of presence-only methods for modelling species distribution. Diversity & Distributions 13, 397–405.
A comparative evaluation of presence-only methods for modelling species distribution.Crossref | GoogleScholarGoogle Scholar |

Venette, R. C., Kriticos, D. J., Magarey, R. D., Koch, F. H., Baker, R. H., Worner, S. P., Gómez Raboteaux, N. N., McKenney, D. W., Dobesberger, E. J., Yemshanov, D., De Barro, P. J., Hutchison, W. D., Fowler, G., Kalaris, T. M., and Pedlar, J. (2010). Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60, 349–362.
Pest risk maps for invasive alien species: a roadmap for improvement.Crossref | GoogleScholarGoogle Scholar |

Verbyla, D. L., and Litvaitis, J. a. (1989). Resampling methods for evaluating classification accuracy of wildlife habitat models. Environmental Management 13, 783–787.
Resampling methods for evaluating classification accuracy of wildlife habitat models.Crossref | GoogleScholarGoogle Scholar |

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, a. T., Graham, C. H., Guisan, A., NCEAS Predicting Species Distributions Working Group (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions 14, 763–773.
Effects of sample size on the performance of species distribution models.Crossref | GoogleScholarGoogle Scholar |

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., and Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution 4, 236–243.
Presence-only modelling using MAXENT: when can we trust the inferences?Crossref | GoogleScholarGoogle Scholar |

Young, N., Carter, L., and Evangelista, P. (2011). ‘A MaxEnt model v3. 3.3 e tutorial (ArcGIS v10).’ (Natural Resource Ecology Laboratory, Colorado State University and the National Institute of Invasive Species Science.) Available at http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf [verified 18 May 2017].