Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Nocturnal distance sampling of a Mediterranean population of fallow deer is consistent with population projections

Stefano Focardi A B C , Barbara Franzetti B and Francesca Ronchi B
+ Author Affiliations
- Author Affiliations

A Istituto dei Sistemi Complessi – Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.

B Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca’ Fornacetta, 9, 40064 Ozzano dell’Emilia, Italy.

C Corresponding author. Email: stefano.focardi@fi.isc.cnr.it

Wildlife Research 40(6) 437-446 https://doi.org/10.1071/WR12218
Submitted: 18 December 2012  Accepted: 20 August 2013   Published: 6 November 2013

Abstract

Context: Precise and accurate methods are essential to assess wildlife populations for sound management. We surveyed a managed population of fallow deer (Dama dama) in a Mediterranean environment in Italy, where this non-native ungulate has a negative impact on biodiversity.

Aims: We compare nocturnal distance-sampling (deer are detected by thermal imagery at night) population estimates with demographic projections of the same population.

Methods: We estimated natural survival in fawns (0.86), yearlings (0.83), adult males (0.70) and adult females (0.90) using capture–mark–recapture. By integrating survival estimates with population structure, reproductive traits and harvest data, we performed demographic projections. We performed nocturnal distance sampling on foot by using a thermal imagery once a year (in autumn) from 2001 to 2005. We walked 75–77 km (71 transects) per each survey.

Key results: We showed that our survey design met distance-sampling assumptions. Distance sampling and demographic projections yielded similar and precise (12.6% < CV <24.1%) population estimates, showing a decreasing (–164.64 deer year–1) population trend from 2755 deer in 2001 to 1877 in 2005.

Conclusions: We showed that nocturnal distance sampling is useful to monitor wild deer populations in forests effectively and that it represents a cost-effective tool to develop sounded management policy for this non-native species. We also provided, for the first time, a comprehensive stochastic population model for fallow deer in a Mediterranean environment. Using these population estimates, managers could reduce fallow deer population size to a level compatible with the conservation of the endangered Italian roe deer and improve forest regeneration.

Implications: Nocturnal distance sampling can be used to assess ungulate population living in dense forested habitats effectively and efficiently.

Additional keywords: capture–mark–recapture, Dama dama, Mediterranean environment, stochastic demographic projections, thermal imagery.


References

Acevedo, P., Ruiz-Fons, F., Vicente, J., Reyes-García, A. R., Alzaga, V., and Gortázar, C. (2008). Estimating red deer abundance in a wide range of management situations in Mediterranean habitats. Journal of Zoology 276, 37–47.
Estimating red deer abundance in a wide range of management situations in Mediterranean habitats.Crossref | GoogleScholarGoogle Scholar |

Apollonio, M., Andersen, R., and Putnam, R. (2010). ‘European Ungulates and their Management in the 21st Century.’ (Cambridge University Press: Cambridge, UK.)

Bar-David, S., Saltz, D., Dayan, T., Perelberg, A., and Dolev, A. (2005). Demographic models and reality of reintroductions: Persian fallow deer in Israel. Conservation Biology 19, 131–138.
Demographic models and reality of reintroductions: Persian fallow deer in Israel.Crossref | GoogleScholarGoogle Scholar |

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling. Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford, UK.)

Butler, M. J., Wallace, M. C., Ballard, W. B., De Maso, S. J., and Applegate, R. D. (2005). From the field: the relation of Rio Grande wild turkey distributions to roads. Wildlife Society Bulletin 33, 745–748.
From the field: the relation of Rio Grande wild turkey distributions to roads.Crossref | GoogleScholarGoogle Scholar |

Caswell, H. (2001). ‘Matrix Population Models: Construction, Analysis and Interpretation.’ (Sinauer and Associates: Sunderland, MA.)

Chapman, D. I., Chapman, N. G. (1975). ‘Fallow Deer. Their History, Distribution and Biology.’ (Terence Dalton: Lavenham, UK.)

Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M., and Pradel, R. (2009). U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32, 1071–1074.
U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data.Crossref | GoogleScholarGoogle Scholar |

Clutton-Brock, T. H., Coulson, T. N., Milner-Gulland, E. J., Thomson, D., and Armstrong, H. M. (2002). Sex differences in emigration and mortality affect optimal management of deer populations. Nature 415, 633–637.
Sex differences in emigration and mortality affect optimal management of deer populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVCjsbo%3D&md5=4b7c93b46164bb1e0acf7db484f2a5dfCAS | 11832944PubMed |

Cooch, E., and White, G. (2013). ‘Program Mark. A Gentle Introduction.’ Available at http://www.phidot.org/software/mark/docs/book/ [Verified 7 October 2013]

Elphick, C. S. (2008). How you count counts: the importance of methods research in applied ecology. Journal of Applied Ecology 45, 1313–1320.
How you count counts: the importance of methods research in applied ecology.Crossref | GoogleScholarGoogle Scholar |

Ferretti, F., Sforzi, A., and Lovari, S. (2008). Intolerance amongst deer species at feeding: roe deer are uneasy banqueters. Behavioural Processes 78, 487–491.
Intolerance amongst deer species at feeding: roe deer are uneasy banqueters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czgs1Wjsw%3D%3D&md5=2ceecc0aabc21584c16d14f8d44bf75cCAS | 18395364PubMed |

Focardi, S., and Tinelli, A. (2005). Herbivory in a Mediterranean forest: browsing impact and plant compensation. Acta Oecologica 28, 239–247.
Herbivory in a Mediterranean forest: browsing impact and plant compensation.Crossref | GoogleScholarGoogle Scholar |

Focardi, S., De Marinis, A., Rizzotto, M., and Pucci, A. (2001). Comparative evaluation of thermal infrared imaging and spotlighting for wildlife surveys. Wildlife Society Bulletin 29, 133–139.

Focardi, S., Isotti, R., and Tinelli, A. (2002). Line transect estimates of ungulate populations in a Mediterranean forest. The Journal of Wildlife Management 66, 48–58.
Line transect estimates of ungulate populations in a Mediterranean forest.Crossref | GoogleScholarGoogle Scholar |

Focardi, S., Montanaro, P., Isotti, R., Ronchi, F., Scacco, M., and Calmanti, R. (2005). Distance sampling effectively monitored a declining population of Italian roe deer (Capreolus capreolus italicus). Oryx 39, 421–428.
Distance sampling effectively monitored a declining population of Italian roe deer (Capreolus capreolus italicus).Crossref | GoogleScholarGoogle Scholar |

Focardi, S., Aragno, P., Montanaro, P., and Riga, F. (2006). Inter-specific competition from fallow deer Dama dama reduces habitat quality for the Italian roe deer Capreolus capreolus italicus. Ecography 29, 407–417.
Inter-specific competition from fallow deer Dama dama reduces habitat quality for the Italian roe deer Capreolus capreolus italicus.Crossref | GoogleScholarGoogle Scholar |

Focardi, S., Gaillard, J.-M., Ronchi, F., and Rossi, S. (2008). Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. Journal of Mammalogy 89, 1113–1123.
Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate.Crossref | GoogleScholarGoogle Scholar |

Franzetti, B., Ronchi, F., Marini, F., Scacco, M., Calmanti, R., Calabrese, A., Aragno, P., Montanaro, P., and Focardi, S. (2012). Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. European Journal of Wildlife Research 58, 385–402.
Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates.Crossref | GoogleScholarGoogle Scholar |

Gaillard, J.-M., Festa-Bianchet, M., and Yoccoz, N.-G. (1998). Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology & Evolution 13, 58–63.
Population dynamics of large herbivores: variable recruitment with constant adult survival.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFyhtw%3D%3D&md5=0d174b170a11d690857340e11f217b18CAS |

Galli, A., Focardi, S., Iseppi, M., and Piasenter, E. (2008). Age determination in fallow deer (Dama dama) neonates. Wildlife Biology 14, 386–390.
Age determination in fallow deer (Dama dama) neonates.Crossref | GoogleScholarGoogle Scholar |

Gill, R. M. A., Thomas, M. L., and Stocker, D. R. (1997). The use of portable thermal imaging for estimating deer population density in forest habitats. Journal of Applied Ecology 34, 1273–1286.
The use of portable thermal imaging for estimating deer population density in forest habitats.Crossref | GoogleScholarGoogle Scholar |

Hemami, M. R., Watkinson, A. R., Gill, R. M. A., and Dolman, P. M. (2007). Estimating abundance of introduced Chinese muntjac Muntiacus reevesi and native roe deer Capreolus capreolus using portable thermal imaging equipment. Mammal Review 37, 246–254.
Estimating abundance of introduced Chinese muntjac Muntiacus reevesi and native roe deer Capreolus capreolus using portable thermal imaging equipment.Crossref | GoogleScholarGoogle Scholar |

Imperio, S., Focardi, S., Santini, G., and Provenzale, A. (2012). Population dynamics in a guild of four Mediterranean ungulates: density-dependence, environmental effects and inter-specific interactions. Oikos 121, 1613–1626.

Kilgo, J. C., Labisky, R. F., and Fritzen, D. F. (1998). Influences of hunting on the behavior of white-tailed deer: implications for conservation of the Florida panther. Conservation Biology 12, 1359–1364.
Influences of hunting on the behavior of white-tailed deer: implications for conservation of the Florida panther.Crossref | GoogleScholarGoogle Scholar |

Kissell, R. E., and Nimmo, S. K. (2011). A technique to estimate white-tailed deer Odocoileus virginianus density using vertical-looking infrared imagery. Wildlife Biology 17, 85–92.
A technique to estimate white-tailed deer Odocoileus virginianus density using vertical-looking infrared imagery.Crossref | GoogleScholarGoogle Scholar |

Langbein, J., and Putman, R. J. (1992). Reproductive success of female fallow deer in relation to age and conditions. ‘Biology of Deer’. (Ed. R. Brown.) pp. 293–299. (Springer-Verlag: New York.)

Marini, F., Franzetti, B., Calabrese, A., Cappellini, S., and Focardi, S. (2009). Response to human presence during nocturnal line transect surveys in fallow deer (Dama dama) and wild boar (Sus scrofa). European Journal of Wildlife Research 55, 107–115.
Response to human presence during nocturnal line transect surveys in fallow deer (Dama dama) and wild boar (Sus scrofa).Crossref | GoogleScholarGoogle Scholar |

Mayle, B. A., Peace, A. J., and Gill, R. M. A. (1999) ‘How Many Deer? A Field Guide to Estimating Deer Population Size.’ (Forestry Commission: Edinburgh.)

McElligott, A. G., Altwegg, R., and Hayden, T. J. (2002). Age-specific survival and reproductive probabilities: evidence for senescence in male fallow deer (Dama dama). Proceedings. Biological Sciences 269, 1129–1137.
Age-specific survival and reproductive probabilities: evidence for senescence in male fallow deer (Dama dama).Crossref | GoogleScholarGoogle Scholar |

Morelle, K., Bouche, P., Lehaire, F., Leeman, V., and Lejeune, P. (2012). Game species monitoring using road-based distance sampling in association with thermal imagers: a covariate analysis. Animal Biodiversity and Conservation 35, 253–265.

Morellet, N., Gaillard, J.-M., Hewison, M., Ballon, P., Boscardin, Y., Duncan, P., Klein, F., and Maillard, D. (2007). Indicators of ecological change: new tools for managing populations of large herbivores. Journal of Applied Ecology 44, 634–643.
Indicators of ecological change: new tools for managing populations of large herbivores.Crossref | GoogleScholarGoogle Scholar |

Mysterud, A. (2006). The concept of overgrazing and its role in the management of large herbivores. Wildlife Biology 12, 129–141.
The concept of overgrazing and its role in the management of large herbivores.Crossref | GoogleScholarGoogle Scholar |

Naugle, D. E., Jenes, J. A., and Kernohan, R. J. (1996). Use of thermal infrared sensing to estimate density of white-tailed deer. Wildlife Society Bulletin 24, 37–47.

Pignatti, S., Bianco, P. M., Tescarollo, P., and Scarascia Mugnozza, G. T. (2001). La vegetazione della Tenuta Presidenziale di Castelporziano. Accademia Nazionale delle Scienze detta dei XL. Scritti e Documenti 26, 441–708.

Putman, R. J., Langbein, J., Hewison, A. J. M., and Sharma, S. K. (1996). Relative role of density-dependent and density-independent factors in population dynamics of British deer. Mammal Review 26, 81–101.
Relative role of density-dependent and density-independent factors in population dynamics of British deer.Crossref | GoogleScholarGoogle Scholar |

Skalski, J. R., Ryding, K. F., and Millspaugh, J. J. (2005). ‘Wildlife Demography.’ (Elsevier: Amsterdam.)

Smart, J. C. R., Ward, A. I., and White, P. C. L. (2004). Monitoring woodland deer populations in the UK: an imprecise science. Mammal Review 34, 99–114.
Monitoring woodland deer populations in the UK: an imprecise science.Crossref | GoogleScholarGoogle Scholar |

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2009). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar |

Wäber, K., Dolman, P., and Spencer, J. (2013). Achieving landscape-scale deer management for biodiversity conservation: the need to consider sources and links. The Journal of Wildlife Management 77, 726–736.
Achieving landscape-scale deer management for biodiversity conservation: the need to consider sources and links.Crossref | GoogleScholarGoogle Scholar |

Walter, M. J., and Hone, J. (2003). A Comparison of 3 aerial survey techniques to estimate wild horse abundance in the Australian Alps. Wildlife Society Bulletin 31, 1138–1149.

Warren, R. J. (2011). Deer overabundance in the USA: recent advances in population control. Animal Production Science 51, 259–266.
Deer overabundance in the USA: recent advances in population control.Crossref | GoogleScholarGoogle Scholar |

Wegge, P., and Storaas, T. (2009). Sampling tiger ungulate prey by the distance method: lessons learned in Bardia National Park, Nepal. Animal Conservation 12, 78–84.
Sampling tiger ungulate prey by the distance method: lessons learned in Bardia National Park, Nepal.Crossref | GoogleScholarGoogle Scholar |