Changes in guanaco distribution from Late Holocene to present times in Northwest Patagonia: connecting archaeological, ethnohistoric and current data
Bruno F. Moscardi A B , Martín Vilariño C , Sergio L. D’Abramo B D , Luis Sosa Pfatschbacher E , Valeria Bernal B D , Diego D. Rindel A B and S. Ivan Perez B D *A
B
C
D
E
Abstract
The guanaco (Lama guanicoe) is one of the four species of South American camels, and is the largest native mammal inhabiting arid and semi-arid environments in South America. Although the guanaco was abundant and widely distributed in the past, currently its density and distribution range are substantially reduced, inhabiting mainly Southern Patagonia in small isolated groups. The decline in guanaco populations is most likely related to the Anthropocene defaunation process that is affecting large mammals in developing countries worldwide, but the extent and causes of these changes are not well understood.
To explore both the changes in the distribution of guanaco populations in Northwest Patagonia and the environmental and anthropic factors that shaped the distribution patterns, by employing a long-term perspective spanning from the end of the Late Holocene to present times (i.e. the last 2500 years).
We combine archaeological information, ethnohistorical records and current observations and apply Species Distribution Models using bioclimatic and anthropic factors as explanatory variables.
Guanaco spatial distribution in Northwest Patagonia changed significantly throughout time. This change consisted in the displacement of the species towards the east of the region and its disappearance from northwest Neuquén and southwest Mendoza in the last 30 years. In particular, the high-density urban settlements and roads, and secondly, competition with ovicaprine livestock (goats and sheep) for forage are the main factors explaining the change in guanaco distribution.
Guanaco and human populations co-existed in the same areas during the Late Holocene and historic times (16th to 19th centuries), but during the 20th century the modern anthropic impact generated a spatial dissociation between both species, pushing guanaco populations to drier and more unproductive areas that were previously peripheral in its distribution.
As with many other large mammal species in developing countries, Northwest Patagonia guanaco populations are undergoing significant changes in their range due to modern anthropic activities. Considering that these events are directly related to population declines and extirpations, together with the striking low density recorded for Northwest Patagonia guanaco populations, urgent management actions are needed to mitigate current human impacts.
Keywords: anthropocene, defaunation, habitat loss, human impact, Lama guanicoe, long-term perspective, South America, Species Distribution Models.
References
Abraham E, del Valle HF, Roig F, Torres L, Ares JO, Coronato F, Godagnone R (2009) Overview of the geography of the Monte Desert biome (Argentina). Journal of Arid Environments 73, 144-153.
| Crossref | Google Scholar |
Arana MD, Martinez GA, Oggero AJ, Natale ES, Morrone JJ (2017) Map and shapefile of the biogeographic provinces of Argentina. Zootaxa 4341, 420-422.
| Crossref | Google Scholar | PubMed |
Araujo BBA, Oliveira-Santos LGR, Lima-Ribeiro MS, Diniz-Filho JAF, Fernandez FAS (2017) Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quaternary International 431, 216-222.
| Crossref | Google Scholar |
Baldi R, Pelliza-Sbriller A, Elston D, Albon S (2004) High potential for competition between guanacos and sheep in Patagonia. Journal of Wildlife Management 68, 924-938.
| Crossref | Google Scholar |
Baldi RB, Acebes P, Cuellar E, Funes M, Hoces D, Puig S, Franklin WL (2016) Lama guanicoe. The IUCN Red List of Threatened Species 2016: e.T11186A18540211. Available at https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T11186A18540211.en
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3(2), 327-338.
| Crossref | Google Scholar |
Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, et al. (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336), 51-57.
| Crossref | Google Scholar | PubMed |
Bay Gavuzzo AP, Gáspero J, Bernardos J, Pedrana J, De Lamo D, von Thüngen J (2015) ‘Distribución y densidad de guanacos (Lama guanicoe) en la Patagonia: Informe de relevamiento 2014–2015.’ (Ediciones INTA: Bariloche, Argentina). Available at http://wwwminagrigobar/site/ganaderia/camelidos/indexphp
Bianchi E, Villalba R, Viale M, Couvreux F, Marticorena R (2016) New precipitation and temperature grids for northern Patagonia: advances in relation to global climate grids. Journal of Meteorological Research 30, 38-52.
| Crossref | Google Scholar |
Brown JL, Hill DJ, Dolan AM, Carnaval AC, Haywood AM (2018) PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5, 180254 . doi:.
| Crossref | Google Scholar |
Burgi MV, Marino A, Rodríguez MV, Pazos G, Baldi R (2012) Response of guanacos Lama guanicoe to changes in land management in Península Valdés, Argentine Patagonia: conservation implications. Oryx 46, 99-105.
| Crossref | Google Scholar |
Cabrera AL (1971) Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14, 1-42.
| Google Scholar |
Carmanchahi PD, Panebianco A, Leggieri L, Barri F, Marozzi A, Flores C, et al. (2020) Lama guanicoe. In ‘Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina.’ (Ed. SAyDS–SAREM) Available at http://cma.sarem.org.ar
Carmanchahi P, Funes MC, Panebianco A, Gregorio PF, Leggieri L, Marozzi A, Ovejero R (2022) Taxonomy, distribution, and conservation status of wild guanaco populations. In ‘Guanacos and people in patagonia: a social-ecological approach to a relationship of conflicts and opportunities’ (Eds P Carmanchahi, G Lichtenstein) pp. 1–27. (Springer: Switzerland)
Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296, 904-907.
| Crossref | Google Scholar | PubMed |
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1, e1400253.
| Crossref | Google Scholar | PubMed |
Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114, E6089-E6096.
| Crossref | Google Scholar |
Chevalier M, Broennimann O, Cornuault J, Guisan A (2021) Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecological Applications 31(7), e02427.
| Crossref | Google Scholar | PubMed |
Chevalier M, Zarzo-Arias A, Guélat J, Mateo RG, Guisan A (2022) Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Frontiers in Ecology and Evolution 10, 944116.
| Crossref | Google Scholar |
Cobos VA, Postillone MB, Bernal V, Ivan Perez S (2022) Spatio-temporal demographic dynamics of the human populations from Northwest Patagonia and central Chile during the Pleistocene-Holocene. Journal of Archaeological Science: Reports 44, 103547.
| Crossref | Google Scholar |
Cordero JA (2012) Las prácticas de subsistencia de las sociedades cazadoras-recolectoras del noroeste de la Patagonia argentina a lo largo del Holoceno. Archaeofauna 21, 99-120.
| Crossref | Google Scholar |
De Martonne ED (1926) L’indice d’aridité. Bulletin de l’Association de Géographes Français 3(9), 3-5.
| Crossref | Google Scholar |
De Porras ME (2017) Escenarios paleoambientales y paleoclimáticos de la Patagonia norte (Neuquén) desde el Tardiglacial. In ‘El poblamiento humano del norte del Neuquén: estado actual de conocimiento y perspectivas.’ (Eds F Gordón, R Barberena, V Bernal) pp. 23–34. (Aspha ediciones: Buenos Aires, Argentina)
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the Anthropocene. Science 345, 401-406.
| Crossref | Google Scholar | PubMed |
D’Abramo SL, Cobos VA, Ivan Perez S, Bernal V (2021) Summer camps location and distribution of archaeological sites in north Neuquén (Northwest Patagonia). Environmental Archaeology 29(4), 281-294.
| Crossref | Google Scholar |
Easdale MH, Aguiar MR, Paz R (2018) El proceso de urbanización en un territorio pastoril trashumante. Cuadernos geográficos de la Universidad de Granada 57, 283-303.
| Google Scholar |
Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697.
| Crossref | Google Scholar |
Ellis EC, Gauthier N, Klein Goldewijk K, Bliege Bird R, Boivin N, Díaz S, Fuller DQ, Gilll JL, Kaplan JO, Kingston N, Locke H, McMichael CNH, Ranco D, Rick TC, Shaws MR, Stephens L, Svenning JC, Watson JEM (2021) People have shaped most of terrestrial nature for at least 12,000 years. Proceedings of the National Academy of Sciences 118, e2023483118.
| Crossref | Google Scholar |
Essl F, Dullinger S, Rabitsch W, Hulme PE, Pyšek P, Wilson JRU, Richardson DM (2015) Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions 21, 534-547.
| Crossref | Google Scholar |
Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, et al. (2011) Trophic downgrading of planet earth. Science 333, 301-306.
| Crossref | Google Scholar | PubMed |
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302-4315.
| Crossref | Google Scholar |
Flores CE, Bellis LM, Adrián S (2020) Modelling the abundance and productivity distribution to understand the habitat–species relationship: the guanaco (Lama guanicoe) case study. Wildlife Research 47, 448-459.
| Crossref | Google Scholar |
Franklin WL, Bas F, Bonacic CF, Cunazza C, Soto N (1997) Striving to manage Patagonian guanacos for sustained use in the grazing agroecosystems of southern Chile. Wildlife Society Bulletin 25, 65-73.
| Google Scholar |
Galetti M, Moleón M, Jordano P, Pires MM, Guimaraes PR, Jr, Pape T, et al. (2018) Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews 93, 845-862.
| Crossref | Google Scholar | PubMed |
González BA, Acebes P (2016) Reevaluación del guanaco para la Lista Roja de la UICN: situación actual y recomendaciones a futuro. GECS News 6, 15-21.
| Google Scholar |
González BA, Palma RE, Zapata B, Marín JC (2006) Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mammal Review 36, 157-178.
| Crossref | Google Scholar |
González BA, Samaniego H, Marín JC, Estades CF (2013) Unveiling current guanaco distribution in Chile based upon niche structure of phylogeographic lineages: Andean Puna to subpolar forests. PLoS ONE 8, e78894.
| Crossref | Google Scholar | PubMed |
Koch PL, Barnosky AD (2006) Late quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215-250.
| Crossref | Google Scholar |
Li X, Zhou Y, Zhao M, Zhao X (2020) A harmonized global nighttime light dataset 1992–2018. Scientific Data 7, 168.
| Crossref | Google Scholar | PubMed |
Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning JC, Terborgh JW (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences 113, 838-846.
| Crossref | Google Scholar |
Marino A, Rodríguez V, Schroeder NM (2020) Wild guanacos as scapegoat for continued overgrazing by livestock across southern Patagonia. Journal of Applied Ecology 57, 2393-2398.
| Crossref | Google Scholar |
Metcalf JL, Turney C, Barnett R, Martin F, Bray SC, Vilstrup JT, et al. (2016) Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the last deglaciation. Science Advancess 2, e1501682.
| Crossref | Google Scholar |
Miotti L, Salemme M (1999) Biodiversity, taxonomic richness and specialists-generalists during late Pleistocene/early Holocene times in Pampa and Patagonia (Argentina, southern South America). Quaternary International 53, 53-68.
| Crossref | Google Scholar |
Moscardi B, Rindel DD, Perez SI (2020) Human diet evolution in Patagonia was driven by the expansion of Lama guanicoe after megafaunal extinctions. Journal of Archaeological Science 115, 105098.
| Crossref | Google Scholar |
Moscardi BF, Bernal V, Silva Araújo M, Gordón F, Cobos VA, Brachetta-Aporta N, Lee R, Rindel DD, Gonzalez PN, Della Negra C, Perez SI (2022) Diet composition and prey choice in prehistoric human individuals from Northwest Patagonia: an application of species distribution and isotope mixing models. American Journal of Biological Anthropology 179, 568-584.
| Crossref | Google Scholar |
Neme GA, Gil AF (2008) Faunal exploitation and agricultural transitions in the South American agricultural limit. International Journal of Osteoarchaeology 18, 293-306.
| Crossref | Google Scholar |
Novaro AJ, Funes MC, Walker RS (2000) Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biological Conservation 92(1), 25-33.
| Crossref | Google Scholar |
Novaro AJ, Walker RS (2021) Lessons of 15,000 years of human–wildlife interaction for conservation in Patagonia in the 21st century. Diversity 13, 633.
| Crossref | Google Scholar |
Oliva G, Paredes P, Ferrante D, Cepeda C, Rabinovich J (2019) Remotely sensed primary productivity shows that domestic and native herbivores combined are overgrazing Patagonia. Journal of Applied Ecology 56, 1575-1584.
| Crossref | Google Scholar |
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933-938.
| Crossref | Google Scholar |
Ovaskainen O, Tikhonov G, Norberg A, Guillaume Blanchet F, Duan L, Dunson D, et al. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters 20, 561-576.
| Crossref | Google Scholar | PubMed |
Oyarzabal M, Clavijo JR, Oakley LJ, Biganzoli F, Tognetti PM, Barberis IM, et al. (2018) Unidades de vegetación de la Argentina. Ecología Austral 28, 40-63.
| Crossref | Google Scholar |
Pacifici M, Rondinini C, Rhodes JR, Burbidge AA, Cristiano A, Watson JEM, et al. (2020) Global correlates of range contractions and expansions in terrestrial mammals. Nature Communications 11, 2840.
| Crossref | Google Scholar | PubMed |
Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8, 85-101.
| Google Scholar |
Pedrana J, Bustamante J, Travaini A, Rodríguez A (2010) Factors influencing guanaco distribution in southern Argentine Patagonia and implications for its sustainable use. Biodiversity and Conservation 19, 3499-3512.
| Crossref | Google Scholar |
Pedrana J, Travaini A, Zanón JI, Zapata SC, Rodríguez A, Bustamante J (2019) Environmental factors influencing guanaco distribution and abundance in central Patagonia, Argentina. Wildlife Research 46, 1-11.
| Crossref | Google Scholar |
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752.
| Crossref | Google Scholar | PubMed |
Pires MM, Koch PL, Farina RA, de Aguiar MAM, dos Reis SF, Guimarães PR (2015) Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proceedings of the Royal Society of London B 282, 20151367.
| Crossref | Google Scholar |
Pires MM, Rindel D, Moscardi B, Cruz LR, Guimaraes PR, Jr, dos Reis SF, Ivan Perez S (2020) Before, during and after megafaunal extinctions: human impact on Pleistocene-Holocene trophic networks in South Patagonia. Quaternary Science Reviews 250, 106696.
| Crossref | Google Scholar |
Politis G, Prates L, Merino M, Tognelli MF (2011) Distribution parameters of guanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastocerus dichotomus) in Central Argentina. Archaeological and paleoenvironmental implications. Journal of Archaeological Science 22, 297-333.
| Crossref | Google Scholar |
Prates L, Perez SI (2021) Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nature Communications 12, 2175.
| Crossref | Google Scholar | PubMed |
Prichard H (1902) Field notes upon some of the larger mammals of Patagonia made between September 1900 and June 1901. Proceedings of the Zoological Society of London 1, 272-277.
| Google Scholar |
Puig S, Videla F, Cona MI (1997) Diet and abundance of the guanaco (Lama guanicoe Müller 1776) in four habitats of northern Patagonia, Argentina. Journal of Arid Environments 36, 343-357.
| Crossref | Google Scholar |
Puig S, Ferraris G, Superina M, Videla F (2003) Distribución de densidades de guanacos (Lama guanicoe) en el norte de la Reserva La Payunia y su área de influencia (Mendoza, Argentina). Multequina 12, 37-48.
| Google Scholar |
Puig S, Rosi MI, Videla F, Mendez E (2011) Summer and winter diet of the guanaco and food availability for a High Andean migratory population (Mendoza, Argentina). Mammalian Biology 76, 727-734.
| Crossref | Google Scholar |
Puig S, Videla F, Rosi MI, Seitz VP (2019) Influence of environmental variables and human activities on the seasonal habitat use by guanacos in Southern Andean Precordillera (Argentina). Studies on Neotropical Fauna and Environment 54, 191-205.
| Crossref | Google Scholar |
QGIS-Development Team (2024) QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at http://qgis.osgeo.org
R Core Team (2023) R: A language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna) Available at https://www.r-project.org/
Radovani NI, Funes MC, Walker RS, Gader R, Novaro AJ (2014) Guanaco Lama guanicoe numbers plummet in an area subject to poaching from oil-exploration trails in Patagonia. Oryx 49, 42-50.
| Crossref | Google Scholar |
Rey A, Novaro AJ, Guichón ML (2012) Guanaco (Lama guanicoe) mortality by entanglement in wire fences. Journal for Nature Conservation 20, 280-283.
| Crossref | Google Scholar |
Rindel DD (2017) Explorando la variabilidad en el registro zooarqueológico de la provincia del Neuquén: tendencias cronológicas y patrones de uso antrópico. In ‘El poblamiento humano del norte del Neuquén: estado actual de conocimiento y perspectivas.’ (Eds F Gordón, R Barberena, V Bernal) pp. 101–122. (Aspha ediciones: Buenos Aires, Argentina)
Rindel DD, Moscardi BF, Ivan Perez S (2021) The distribution of the guanaco (Lama guanicoe) in Patagonia during late Pleistocene–Holocene and its importance for prehistoric human diet. The Holocene 31, 644-657.
| Crossref | Google Scholar |
Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. (2014) Status and ecological effects of the world’s largest carnivores. Science 343, 1241484.
| Crossref | Google Scholar | PubMed |
Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, et al. (2015) Collapse of the world’s largest herbivores. Science Advances 1, e1400103.
| Crossref | Google Scholar | PubMed |
Ripple WJ, Abernethy K, Betts MG, Chapron G, Dirzo R, Galetti M, et al. (2016a) Bushmeat hunting and extinction risk to the world’s mammals. Royal Society Open Science 3, 160498.
| Crossref | Google Scholar | PubMed |
Ripple WJ, Chapron G, López-Bao JV, Durant SM, Macdonald DW, Lindsey PA, et al. (2016b) Saving the world’s terrestrial megafauna. BioScience 66, 807-812.
| Crossref | Google Scholar | PubMed |
Ripple WJ, Wolf C, Newsome TM, Hoffmann M, Wirsing AJ, McCauley DJ (2017) Extinction risk is most acute for the world’s largest and smallest vertebrates. Proceedings of the National Academy of Sciences 114, 10678-10683.
| Crossref | Google Scholar |
Rivarola M, Albornoz M (2013) La Cultura Trashumante. Enfoques teóricos para aproximarse al sistema productivo ganadero de Malargüe. In ‘Rasgos de marginalidad. Diferentes enfoques y aportes para abordar su problemática. Malargüe, un ejemplo motivador.’ (Eds ME Cepparo, E Prieto, G Gabrielidis) pp. 125–146. (Facultad de Filosofía y Letras de la Universidad Nacional de Cuyo: Mendoza, Argentina)
Roig FA, Roig-Juñent S, Corbalán V (2009) Biogeography of the Monte desert. Journal of Arid Environments 73, 164-172.
| Crossref | Google Scholar |
Rusticucci M, Zazulie N, Raga GB (2014) Regional winter climate of the southern central Andes: assessing the performance of ERA-Interim for climate studies. Journal of Geophysical Research: Atmospheres 119, 8568-8582.
| Crossref | Google Scholar |
Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891-904.
| Crossref | Google Scholar |
Sanderson EW, Fisher K, Robinson N, Sampson D, Dunca A, Royte L (2022) The march of the human footprint [Preprint]. EcoEvoRxiv.
| Crossref | Google Scholar |
Schmitt S, Pouteau R, Justeau D, de Boissieu F, Birnbaum P (2017) SSDM: An R package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution 8, 1795-1803.
| Crossref | Google Scholar |
Schroeder NM, Matteucci SD, Moreno PG, Gregorio P, Ovejero R, Taraborelli P, Carmanchahi PD (2014) Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models. PLoS ONE 9, e85960.
| Crossref | Google Scholar | PubMed |
Travaini A, Zapata SC, Bustamante J, Pedrana J, Zanón JI, Rodríguez A (2015) Guanaco abundance and monitoring in Southern Patagonia: distance sampling reveals substantially greater numbers than previously reported. Zoological Studies 54, 23.
| Crossref | Google Scholar |
Varela L, Fariña RA (2016) Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quaternary Research 85, 66-74.
| Crossref | Google Scholar |
Wheeler JC (1995) Evolution and present situation of the South American camelidae. Biological Journal of the Linnean Society 54, 271-295.
| Crossref | Google Scholar |
Woinarski JCZ, Burbidge AA, Harrison PL (2015) Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences 112, 4531-4540.
| Crossref | Google Scholar |
Yeakel JD, Pires MM, Rudolf L, Dominy NJ, Koch PL, Guimarães PR, Jr, Gross T (2014) Collapse of an ecological network in Ancient Egypt. Proceedings of the National Academy of Sciences 111, 14472-14477.
| Crossref | Google Scholar |
Young HS, McCauley DJ, Galetti M, Dirzo R (2016) Patterns, causes, and consequences of anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics 47, 333-358.
| Crossref | Google Scholar |