Pampas fox spatial and temporal variation in Argentinean agroecosystems
Antonella Gorosábel A * , María Paula Barral A , Lucía Bernad A , Sebastián Darío Muñoz A , Jaime Bernardos B and Julieta Pedrana CA Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, INTA-CONICET, Ruta 226 Km 73.5, 7620 Balcarce, Argentina.
B INTA EEA Ing. Agr. Guillermo Covas, Ruta 5 km 580, Anguil, La Pampa 6326, Argentina.
C Departamento de Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad Regional Mar Del Plata, Universidad Tecnológica Nacional, Av. Dorrego 281, Mar del Plata 7600, Argentina.
Abstract
Agricultural activities have reduced wildlife natural habitats and increased the spatial overlap between animals’ distribution and human activities. However, carnivores with a broad diet and flexible habitat requirements can tolerate human-induced environmental changes. Thus, identifying changes in their densities and spatial distribution are important factors to take into consideration when working towards minimising human–carnivore conflict.
Our aim was to identify the main environmental and human variables influencing Pampas fox density and to produce density maps in the reproductive and non-reproductive seasons.
We performed spotlight counts at night, following the line transect method in the non-reproductive and reproductive seasons during two consecutive years. We also obtained landscape, human-impact and environmental spatial variables using remote sensing data and Geographic Information Systems. We modelled and mapped the Pampas fox’s spatial density using Density Surface Models.
We found that disturbance by human activities and landscape configuration influenced the spatial variation of the Pampas fox density across time and space. We registered a positive association between the number of foxes and the proximity to urban areas and paved roads, and we also found higher densities near grasslands areas and less modified habitats varying with the season and year. A higher density of foxes was observed in the non-reproductive season compared with the reproductive season.
This study provides insight on the variation in Pampas fox densities across agroecosystems. It highlights the relevance of more naturalised and protected habitats to sustain the Pampas fox population in highly fragmented landscapes, but also shows a positive association with disturbed areas. The spatial information developed in this study is useful to identify areas where ecosystem services could be encouraged, helping to maintain the ecosystems’ equilibrium and biodiversity conservation, and develop new management programs creating human–wildlife coexistence.
Keywords: agroecosystems, Argentina, carnivores, Density Surface Models, human–carnivore conflict, Pampas fox, Pampas region, spatial density.
References
Allen ML, Wang S, Olson LO, Li Q, Krofel M (2020) Counting cats for conservation: seasonal estimates of leopard density and drivers of distribution in the Serengeti. Biodiversity and Conservation 29, 3591-3608.
| Crossref | Google Scholar |
Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. The Journal of Wildlife Management 66, 912-918.
| Crossref | Google Scholar |
Antún M, Baldi R (2019) Modeling the spatial structure of the endemic mara (Dolichotis patagonum) across modified landscapes. PeerJ 7, e6367.
| Crossref | Google Scholar |
Antún M, Baldi R, Bandieri LM, Agostino RLD (2018) Analysis of the spatial variation in the abundance of lesser rheas using density surface models. Wildlife Research 45, 47-54.
| Crossref | Google Scholar |
Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200, 1-19.
| Crossref | Google Scholar |
Baeza S, Paruelo JM (2020) Land use/land cover change (2000–2014) in the Rio de la Plata grasslands: an analysis based on MODIS NDVI time series. Remote Sensing 12, 381.
| Crossref | Google Scholar |
Baisero D, Visconti P, Pacifici M, Cimatti M, Rondinini C (2020) Projected global loss of mammal habitat due to land-use and climate change. One Earth 2, 578-585.
| Crossref | Google Scholar |
Baldi G, Guerschman JP, Paruelo JM (2006) Characterizing fragmentation in temperate South America grasslands. Agriculture, Ecosystems & Environment 116, 197-208.
| Crossref | Google Scholar |
Barocas A, Hefner R, Ucko M, Merkle JA, Geffen E (2018) Behavioral adaptations of a large carnivore to human activity in an extremely arid landscape. Animal Conservation 21, 433-443.
| Crossref | Google Scholar |
Bino G, Dolev A, Yosha D, Guter A, King R, Saltz D, Kark S (2010) Abrupt spatial and numerical responses of overabundant foxes to a reduction in anthropogenic resources. Journal of Applied Ecology 47, 1262-1271.
| Crossref | Google Scholar |
Borges PAV, Gabriel R, Fattorini S (2019) Biodiversity erosion: causes and consequences. In ‘Life on land, Encyclopedia of the UN Sustainable Development Goals’. (Eds WL Filho, AM Azul, L Brandli, AL Salvia, T Wal) pp. 81–90. (Springer: Cham) doi:10.1007/978-3-319-71065-5
Buckland ST, Marsden SJ, Green RE (2008) Estimating bird abundance: making methods work. Bird Conservation International 18, S91-S108.
| Crossref | Google Scholar |
Canel D, Scioscia NP, Denegri GM, Kittlein M (2016) Dieta del zorro gris pampeano (Lycalopex gymnocercus) en la provincia de Buenos Aires. Mastozoologia Neotropical 23, 359-370.
| Google Scholar |
Carroll C, Noss RF, Paquet PC (2001) Carnivores as focal species for conservation planning in the rocky mountain region. Ecological Applications 11, 961-980.
| Crossref | Google Scholar |
Carter N, Williamson MA, Gilbert S, Lischka SA, Prugh LR, Lawler JJ, Metcalf AL, Jacob AL, Beltrán BJ, Castro AJ, Sage A, Burnham M (2020) Integrated spatial analysis for human–wildlife coexistence in the American West. Environmental Research Letters 15, 021001.
| Crossref | Google Scholar |
Caruso N, Lucherini M, Fortin D, Casanave EB (2016) Species-specific responses of carnivores to human-induced landscape changes in central Argentina. PLoS ONE 11, e0150488.
| Crossref | Google Scholar |
Ćirović D, Penezić A, Krofel M (2016) Jackals as cleaners: ecosystem services provided by a mesocarnivore in human-dominated landscapes. Biological Conservation 199, 51-55.
| Crossref | Google Scholar |
Ditchkoff SS, Saalfeld ST, Gibson CJ (2006) Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosystems 9, 5-12.
| Crossref | Google Scholar |
Ellis BA, Mills JN, Glass GE, McKee KT, Enria DA, Childs JE (1998) Dietary habits of the common rodents in an agroecosystem in Argentina. Journal of Mammalogy 79, 1203-1220.
| Crossref | Google Scholar |
Farias AA, Kittlein MJ (2008) Small-scale spatial variability in the diet of pampas foxes (Pseudalopex gymnocercus) and human-induced changes in prey base. Ecological Research 23, 543-550.
| Crossref | Google Scholar |
Fedriani JM, Delibes M (2009) Seed dispersal in the Iberian pear, Pyrus bourgaeana: a role for infrequent mutualists. Ecoscience 16, 311-321.
| Crossref | Google Scholar |
Fedriani JM, Fuller TK, Sauvajot RM (2001) Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography 24, 325-331.
| Crossref | Google Scholar |
Fehlmann G, O’riain MJ, Fürtbauer I, King AJ (2021) Behavioral causes, ecological consequences, and management challenges associated with wildlife foraging in human-modified landscapes. BioScience 71, 40-54.
| Crossref | Google Scholar |
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309, 570-574.
| Crossref | Google Scholar |
Frey SN, Conover MR (2006) Habitat use by meso-predators in a corridor environment. The Journal of Wildlife Management 70, 1111-1118.
| Google Scholar |
Gharajehdaghipour T, Roth JD, Fafard PM, Markham JH (2016) Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens. Scientific Reports 6, 24020.
| Crossref | Google Scholar |
Gorosábel A, Bernad L, Muñoz SD, Pedrana J (2022) Density surface modeling of European hare in the Argentinean Pampas. Mammal Research 67, 173-185.
| Crossref | Google Scholar |
Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. Journal of Agricultural, Biological, and Environmental Statistics 9, 181-199.
| Crossref | Google Scholar |
Herrera LP, Sabatino MC, Jaimes FR, Poggio SL (2017) Una propuesta para valorar el estado de conservación de los bordes de caminos rurales en el sudeste bonaerense. Ecologia Austral 27, 403-414.
| Google Scholar |
Heydon MJ, Reynolds JC, Short MJ (2000) Variation in abundance of foxes (Vulpes vulpes) between three regions of rural Britain, in relation to landscape and other variables. Journal of Zoology 251, 253-264.
| Crossref | Google Scholar |
Hodara K, Busch M (2010) Patterns of macro and microhabitat use of two rodent species in relation to agricultural practices. Ecological Research 25, 113-121.
| Crossref | Google Scholar |
Inger R, Cox DTC, Per E, Norton BA, Gaston KJ (2016) Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecology and Evolution 6, 7015-7023.
| Crossref | Google Scholar |
Jetz W, McGeoch MA, Guralnick R, Ferrier S, Beck J, Costello MJ, Fernandez M, Geller GN, Keil P, Merow C, Meyer C, Muller-Karger FE, Pereira HM, Regan EC, Schmeller DS, Turak E (2019) Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution 3, 539-551.
| Crossref | Google Scholar |
Johnson WE (2004) Evaluating and predicting the impacts of exploitation and trade on canid populations. In ‘Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan’. (Eds C Sillero-Zubiri, C Hoffmann, DW Macdonald) pp. 267–272. (IUCN Canid Specialist Group: Gland, Switzerland and Cambridge UK)
Jędrzejewski W, Robinson HS, Abarca M, Zeller KA, Velasquez G, Paemelaere EAD, Goldberg JF, Payan E, Hoogesteijn R, Boede EO, Schmidt K, Lampo M, Viloria ÁL, Carreño R, Robinson N, Lukacs PM, Nowak JJ, Salom-Pérez R, Castañeda F, Boron V, Quigley H (2018) Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – application to the jaguar (Panthera onca). PLoS ONE 13, e0194719.
| Crossref | Google Scholar |
Lozano J, Olszańska A, Morales-reyes Z, Castro AA, Malo AF, Moleón M, Sánchez-zapata JA, Cortés-avizanda A, von Wehrden H, Dorresteijn I, Kansky R, Fischer J, Martín-López B (2019) Human-carnivore relations: a systematic review. Biological Conservation 237, 480-492.
| Crossref | Google Scholar |
Lucherini M (2016) Lycalopex culpaeus. The IUCN red list of threatened species 2016. e.T6928A85371194. Available at https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T6928A85371194.en
Lucherini M, Luengos Vidal EM (2008) Lycalopex gymnocercus (Carnivora: Canidae). Mammalian Species 820, 1-9.
| Crossref | Google Scholar |
Luengos Vidal ME (2009) Organización espacial de Pseudalopex gymnocercus en los pastizales pampeanos. Mastozoología Neotropical 17, 228-229.
| Google Scholar |
Luengos Vidal EM, Sillero-Zubiri C, Marino J, Casanave EB, Lucherini M (2012) Spatial organization of the Pampas fox in a grassland relict of central Argentina: a flexible system. Journal of Zoology 287, 133-141.
| Crossref | Google Scholar |
Luengos Vidal E, Farías A, Valenzuela AEJ, Caruso N (2019) Lycalopex gymnocercus. Ed SAREM. Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. Available at http://cma.sarem.org.ar
Marra G, Wood SN (2011) Practical variable selection for generalized additive models. Computational Statistics & Data Analysis 55, 2372-2387.
| Crossref | Google Scholar |
McGarigal K, Cushman SA, Ene E (2012) ) Landscape metrics for categorical map patterns. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts Amherst Available at http://www.umass.edu/landeco/research/fragstats/fragstats.html.
| Google Scholar |
Miller DL (2015) Multivariate smoothing, model selection – distance sampling workshops. Available at workshops.distancesampling.org/duke-spatial-2015/slides/7-multiple-smooths.html
Miller DL, Burt ML, Rexstad EA, Thomas L (2013) Spatial models for distance sampling data: recent developments and future directions. Methods in Ecology and Evolution 4, 1001-1010.
| Crossref | Google Scholar |
Mills JN, Ellis BA, McKee KT, Maiztegui JI, Childs JE (1991) Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. Journal of Mammalogy 72, 470-479.
| Crossref | Google Scholar |
Nielsen SE, McDermid G, Stenhouse GB, Boyce MS (2010) Dynamic wildlife habitat models: seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biological Conservation 143, 1623-1634.
| Crossref | Google Scholar |
Nowak S, Szewczyk M, Tomczak P, Całus I, Figura M, Mysłajek RW (2021) Social and environmental factors influencing contemporary cases of wolf aggression towards people in Poland. European Journal of Wildlife Research 67, 69.
| Crossref | Google Scholar |
Planillo A, Mata C, Manica A, Malo JE (2018) Carnivore abundance near motorways related to prey and roadkills. The Journal of Wildlife Management 82, 319-327.
| Crossref | Google Scholar |
Plaza PI, Lambertucci SA (2017) How are garbage dumps impacting vertebrate demography, health, and conservation? Global Ecology and Conservation 12, 9-20.
| Crossref | Google Scholar |
R Core Team (2017) R: A Language and Environment for Statistical Computing. Available at https://www.R-project.org/
Romero-Muñoz A, Torres R, Noss AJ, Giordano AJ, Quiroga V, Thompson JJ, Baumann M, Altrichter M, McBride R, Jr, Velilla M, Arispe R, Kuemmerle T (2019) Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Diversity and Distributions 25, 176-190.
| Crossref | Google Scholar |
Rosario S, Soledad FM, Regino C (2015) Wild small mammals in intensive milk cattle and swine production systems. Agriculture, Ecosystems & Environment 202, 251-259.
| Crossref | Google Scholar |
Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing 52, 223-227.
| Google Scholar |
Ruette S, Stahl P, Albaret M (2003) Applying distance-sampling methods to spotlight counts of red foxes. Journal of Applied Ecology 40, 32-43.
| Crossref | Google Scholar |
Rwanga SS, Ndambuki JM (2017) Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences 08, 611-622.
| Crossref | Google Scholar |
Schroeder NM, Matteucci SD, Moreno PG, Gregorio P, Ovejero R, Taraborelli P, Carmanchahi PD (2014) Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models. PLoS ONE 9, e85960.
| Crossref | Google Scholar |
Schwartz ALW, Williams HF, Chadwick E, Thomas RJ, Perkins SE (2018) Roadkill scavenging behaviour in an urban environment. Journal of Urban Ecology 4, juy006.
| Crossref | Google Scholar |
Smith DW, Bangs EE, Oakleaf JK, Mack C, Fontaine J, Boyd D, Jimenez M, Pletscher DH, Niemeyer CC, Meier TJ, Stahler DR, Holyan J, Asher VJ, Murray DL (2010) Survival of colonizing wolves in the Northern Rocky Mountains of the United States, 1982–2004. Journal of Wildlife Management 74, 620-634.
| Crossref | Google Scholar |
Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5-14.
| Crossref | Google Scholar |
Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369-373.
| Crossref | Google Scholar |
Treves A, Karanth KU (2003) Human-Carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology 17, 1491-1499.
| Crossref | Google Scholar |
Valente AM, Marques TA, Fonseca C, Torres RT (2016) A new insight for monitoring ungulates: density surface modelling of roe deer in a Mediterranean habitat. European Journal of Wildlife Research 62, 577-587.
| Crossref | Google Scholar |
Viglizzo EF, Lértora F, Pordomingo AJ, Bernardos JN, Roberto ZE, Del Valle H (2001) Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems & Environment 83, 65-81.
| Crossref | Google Scholar |
Williams ST, Maree N, Taylor P, Belmain SR, Keith M, Swanepoel LH (2018) Predation by small mammalian carnivores in rural agro-ecosystems: an undervalued ecosystem service? Ecosystem Services 30, 362-371.
| Crossref | Google Scholar |
Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology 73, 3-36.
| Crossref | Google Scholar |
Wood SN, Pya N, Säfken B (2016) Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association 111, 1548-1563.
| Crossref | Google Scholar |
Woollard T, Harris S (1990) A behavioural comparison of dispersing and non-dispersing foxes (Vulpes vulpes) and an evaluation of some dispersal hypotheses. The Journal of Animal Ecology 59, 709.
| Crossref | Google Scholar |
Zelaya K, van Vliet J, Verburg PH (2016) Characterization and analysis of farm system changes in the Mar Chiquita basin, Argentina. Applied Geography 68, 95-103.
| Crossref | Google Scholar |
Zufiaurre E, Codesido M, Abba AM, Bilenca D (2017) The role of stubble type and spilled seed biomass on the abundance of seed-eating birds in agroecosystems. Ardeola 64, 31-48.
| Crossref | Google Scholar |