Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

The role of drought conditions on the recent increase in wildfire occurrence in the high Andean regions of Peru

Ricardo Zubieta https://orcid.org/0000-0002-4315-7695 A B * , Yerson Ccanchi A B , Alejandra Martínez https://orcid.org/0000-0002-8354-9626 A , Miguel Saavedra https://orcid.org/0000-0002-4773-0647 A , Edmundo Norabuena https://orcid.org/0000-0002-1865-8922 A , Sigrid Alvarez A C and Mercy Ilbay https://orcid.org/0000-0001-9503-2686 D
+ Author Affiliations
- Author Affiliations

A Instituto Geofísico del Peru (IGP), Subdirección de Ciencias de la Atmósfera e Hidrósfera (SCAH), Calle Badajoz 169 Mayorazgo-Ate, 15012, Peru.

B Universidad Nacional Agraria La Molina (UNALM), Av. La Molina s/n, La Molina, 15012, Peru.

C Universidad Nacional de San Antonio Abad del Cusco, Facultad de Derecho y Ciencias Sociales, Av. de La Cultura 773, Cusco 08000, Peru.

D Universidad Técnica de Cotopaxi (UTC), Facultad de Ciencias Agropecuarias y Recursos Naturales, Latacunga 050150, Ecuador.

* Correspondence to: rzubieta@igp.gob.pe

International Journal of Wildland Fire 32(4) 531-544 https://doi.org/10.1071/WF21129
Submitted: 17 September 2021  Accepted: 18 December 2022   Published: 24 January 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF.

Abstract

Wildfire occurrence has increased sharply in the last two decades in the Peruvian Andes. There is, however, little research on wildfires and their impacts. This study explores the conditions conducive to wildfire during 2020. MODIS images were collected to estimate the development of vegetation. In addition, ground-based monthly and satellite-based daily precipitation data were collected. Daily precipitation regularity was evaluated using a concentration index (CI), while monthly precipitation was used to estimate the Standard Precipitation Index (SPI). We used also the Global Vegetation Moisture Index (GVMI), which is a useful indicator of vegetation dynamics based on vegetation moisture. Our results do not indicate a direct link between rainfall regularity (lowest  CI values) and development of vegetation. Although the SPI drought analysis using seasonal rainfall indicated nearly normal conditions during 2019–2020, analysis of dry-day frequency (DDF) suggests that the dry period played an important role between September and November 2020, producing conditions similar to the droughts of 2005, 2010 and 2016. GVMI also showed below-average values from April to November. We corroborate the usefulness of DDF for monitoring the potential increase in wildfire conditions. A controlled burn policy could offer a more useful way to reduce the impacts of wildfire.

Keywords: climate, drought, fire management, fire prevention, fuel availability, MODIS, remote sensing, wet season onset.


References

All J, Medler M, Arques S, et al. (2017) Fire Response to Local Climate Variability: Huascarán National Park, Peru. Fire Ecology 13, 85–104.
Fire Response to Local Climate Variability: Huascarán National Park, Peru.Crossref | GoogleScholarGoogle Scholar |

Alvarez SA (2023) Perception of the wildfire occurrence of the Chanka and Arín‐Huarán Andean communities, Calca – Calca. Professional dissertation. University Council, National University San Antonio Abad del Cusco.

Arce Vizcarra RA, De La Cruz-Lozado J (2022) Incremento de incendios forestales en américa latina: problemática, causas e impactos en la biodiversidad, 2005-2021. Revista TSE’DE 5, [In Spanish]​ http://tsachila.edu.ec/ojs/index.php/TSEDE/article/view/116

Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon Forest measured with spaceborne imaging spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 101, 6039–6044.
Drought stress and carbon uptake in an Amazon Forest measured with spaceborne imaging spectroscopy.Crossref | GoogleScholarGoogle Scholar |

Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal 76, 300–306.
Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat.Crossref | GoogleScholarGoogle Scholar |

Aybar C, Fernández C, Huerta A, Lavado W, Vega F, Felipe-Obando O (2020) Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal 65, 770–785.
Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day.Crossref | GoogleScholarGoogle Scholar |

Boschetti L, Roy DP, Giglio L, Huang H, Zubkova M, Humber ML (2019) Global validation of the collection 6 MODIS burned area product. Remote Sensing of Environment 235, 111490
Global validation of the collection 6 MODIS burned area product.Crossref | GoogleScholarGoogle Scholar |

Brooks CEP, Carruthers N (1953) ‘Handbook of Statistical Methods in Meteorology.’ (Meteorological Office: London)

Bush MB, Hansen BCS, Rodbell DT, et al. (2005) A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science 20, 703–714.
A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru.Crossref | GoogleScholarGoogle Scholar |

Catenazzi A, Lehr E, May R (2013) The amphibians and reptiles of Manu National Park and its buffer zone, Amazon basin and eastern slopes of the Andes, Peru. Biota Neotropica 13, 269–283.
The amphibians and reptiles of Manu National Park and its buffer zone, Amazon basin and eastern slopes of the Andes, Peru.Crossref | GoogleScholarGoogle Scholar |

Ccanchi YJ (2021) Evaluación de sequías y del riesgo potencial a la ocurrencia de incendios forestales en ecosistemas alto andinos mediante uso de sensores remotos. [Droughts and the potential risk evaluation of the wildfires occurrence in high Andean ecosystems using remote sensing.] Tesis para optar el Titulo profesional de ingeniería agrícola [Professional dissertation]. (Universidad Nacional Agraria La Molina) [In Spanish] Available at https://hdl.handle.net/20.500.12996/5195

Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sensing of Environment 82, 188–197.
Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach.Crossref | GoogleScholarGoogle Scholar |

Collischonn B, Collischonn W, Tucci CEM (2008) Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology 360, 207–216.
Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates.Crossref | GoogleScholarGoogle Scholar |

Corona P, Ascoli D, Barbati A, et al. (2015) Integrated forest management to prevent wildfires under Mediterranean environments. Annals of Silvicultural Research 39, 1–22.
Integrated forest management to prevent wildfires under Mediterranean environments.Crossref | GoogleScholarGoogle Scholar |

Derin Y, Anagnostou E, Berne A, Borga M, Boudevillain B, Buytaert W, Chang C-H, Chen H, Delrieu G, Hsu YC, Lavado-Casimiro W, Manz B, Moges S, Nikolopoulos EI, Sahlu D, Salerno F, Rodríguez-Sánchez J-P, Vergara HJ, Yilmaz KK (2019) Evaluation of GPM-era global satellite precipitation products over multiple complex terrain regions. Remote Sensing 11, 2936
Evaluation of GPM-era global satellite precipitation products over multiple complex terrain regions.Crossref | GoogleScholarGoogle Scholar |

Di Bella CM, Jobbágy EG, Paruelo JM, Pinnock S (2006) Continental fire density patterns in South America. Global Ecology and Biogeography 15, 192–199.
Continental fire density patterns in South America.Crossref | GoogleScholarGoogle Scholar |

Di Pasquale G, Marziano M, Impagliazzo S, Lubritto C, De Natale A, Bader MY (2008) The Holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 17–34.
The Holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal.Crossref | GoogleScholarGoogle Scholar |

Diaz D, Rashford B, De Gryze S, Zakreski S, Dell R, Niles M (2012) Evaluation of avoided grassland conversion and cropland conversion to grassland as potential carbon offset project types. Climate Trust 1, 94–95.
Evaluation of avoided grassland conversion and cropland conversion to grassland as potential carbon offset project types.Crossref | GoogleScholarGoogle Scholar |

ENFEN (2020) Comunicado Oficial ENFEN N° 03-2020. Available at http://enfen.gob.pe/download/comunicado-oficial-enfen-n-03-2020/

Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado W, Drapeau G, Pombosa R (2011) Climate variability and extreme drought in the upper Solimões River (Western Amazon Basin): Understanding the exceptional 2010 drought. Geophysical Research Letters 38, L13406
Climate variability and extreme drought in the upper Solimões River (Western Amazon Basin): Understanding the exceptional 2010 drought.Crossref | GoogleScholarGoogle Scholar |

Espinoza JC, Ronchail J, Frappart F, Lavado W, Santini W, Guyot JL (2013) The Major Floods in the Amazonas River and Tributaries (Western Amazon Basin) during the 1970–2012 Period: A Focus on the 2012 Flood. Journal of Hydrometeorology 14, 1000–1008.
The Major Floods in the Amazonas River and Tributaries (Western Amazon Basin) during the 1970–2012 Period: A Focus on the 2012 Flood.Crossref | GoogleScholarGoogle Scholar |

Espinoza JC, Segura H, Ronchail J, Drapeau G, Gutierrez-Cori O (2016) Evolution of wet-day and dry-day frequency in the western Amazon basin: Relationship with atmospheric circulation and impacts on vegetation. Water Resources Research 52, 8546–8560.
Evolution of wet-day and dry-day frequency in the western Amazon basin: Relationship with atmospheric circulation and impacts on vegetation.Crossref | GoogleScholarGoogle Scholar |

Espinoza Villar JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador). International Journal of Climatology 29, 1574–1594.
Spatio-temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador).Crossref | GoogleScholarGoogle Scholar |

George CT, Hayman G, Weedon GP, Gerard FF (2017) Leaf phenology synchrony for Meso‐ and South America. Natural Environment Research Council, Environmental Information Data Centre.
| Crossref |

Giannakopoulos C, Karali A, Cauchy A (2020) ‘Fire danger indicators for Europe from 1970 to 2098 derived from climate projections, version 1.0.’ (Copernicus Climate Change Service (C3S), Climate Data Store (CDS))
| Crossref |

Giannakopoulos C, Karali A, Cauchy A (2022) ‘Fire danger indicators for Europe from 1970 to 2098 derived from climate projections, version 2.0.’ (Copernicus Climate Change Service (C3S), Climate Data Store (CDS))
| Crossref |

Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO (2018) The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment 217, 72–85.
The Collection 6 MODIS burned area mapping algorithm and product.Crossref | GoogleScholarGoogle Scholar |

Giglio L, Boschetti L, Roy D, Hoffman A, Humber M, Hall JV (2020). Collection 6 MODIS Burned Area product User Guide Version 1.3. (NASA) Available at https://lpdaac.usgs.gov/documents/875/MCD64_User_Guide_V6.pdf

Gonzalez O, Díaz C, Britto B (2019) Assemblage of nectarivorous birds and their floral resources in an elfin forest of the Central Andes of Peru. Ecología Aplicada 18, 21–35.
Assemblage of nectarivorous birds and their floral resources in an elfin forest of the Central Andes of Peru.Crossref | GoogleScholarGoogle Scholar |

Greenpeace (2019) 2019: El año en el que los grandes incendios forestales han evidenciado la emergencia climática. [In Spanish] Available at https://es.greenpeace.org/es/sala-de-prensa/comunicados/2019-el-ano-en-el-que-los-grandes-incendios-forestales-han-evidenciado-la-emergencia-climatica/ [accessed 25 August 2021]

Guenang GM, Kamga FM (2014) Computation of the Standardized Precipitation Index (SPI) and its use to assess drought occurrences in Cameroon over recent decades. Journal of Applied Meteorology and Climatology 53, 2310–2324.
Computation of the Standardized Precipitation Index (SPI) and its use to assess drought occurrences in Cameroon over recent decades.Crossref | GoogleScholarGoogle Scholar |

Halofsky JE, Peterson DL, Harvey BJ (2020) Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology 16, 4
Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA.Crossref | GoogleScholarGoogle Scholar |

Hamilton M, Salerno J (2020) Cognitive maps reveal diverse perceptions of how prescribed fire affects forests and communities. Frontiers in Forests and Global Change 3, 75
Cognitive maps reveal diverse perceptions of how prescribed fire affects forests and communities.Crossref | GoogleScholarGoogle Scholar |

Herzog S, Martínez R, Jørgensen PM, Tiessen H (2011) ‘Climate Change and Biodiversity in the Tropical Andes’. (Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment) Available at https://www.iai.int/index.php/en/post/detail/cambio-climatico-y-biodiversidad-en-los-andes-tropicales

Huffman GJ, Bolvin DT, Nelkin EJ (2015) Day 1 IMERG Final Run Release Notes. NASA Goddard Earth Sciences Data and Information Services Center: Greenbelt. Available at https://gpm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf

Huffman GJ, Stocker EF, Bolvin DT, Nelkin EJ, Tan J (2019) ‘GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06.’ (Goddard Earth Sciences Data and Information Services Center)
| Crossref |

IGP (2021a) Indicadores de la vegetación Andina Amazónica para la prevención de incendios forestales (2021-006). Instituto Geofísico del Perú. [In Spanish] Available at https://repositorio.igp.gob.pe/handle/20.500.12816/5031

IGP (2021b) Indicadores de la vegetación Andina Amazónica para la prevención de incendios forestales (2021-005). [In Spanish] Available at https://repositorio.igp.gob.pe/handle/20.500.12816/5021

IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Eds S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller]  Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPE (2021) Turismo del Sur perdió 154 000 empleos por Covid-19. [In Spanish] Available at https://www.ipe.org.pe/portal/turismo-del-sur-perdio-154-000-empleos-por-covid-19/ [accessed 11 January 2021]

Jimenez JC, Marengo JA, Alves LM, Sulca JC, Takahashi K, Ferret S, Collins M (2021) The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. International Journal of Climatology 41, 3761–3780.
The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region.Crossref | GoogleScholarGoogle Scholar |

Joyce CB, Simpson M, Casanova M (2016) Future wet grasslands: ecological implications of climate change. Ecosystem Health and Sustainability 2, e01240
Future wet grasslands: ecological implications of climate change.Crossref | GoogleScholarGoogle Scholar |

Keeley JE, Syphard AD (2017) Different historical fire–climate patterns in California. International Journal of Wildland Fire 26, 253–268.
Different historical fire–climate patterns in California.Crossref | GoogleScholarGoogle Scholar |

Lavado W, Espinoza JC (2014) Impact of El Niño and La Niña events on rainfall in Peru. Revista Brasileira de Meteorologia 29, 171–182.
Impact of El Niño and La Niña events on rainfall in Peru.Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Law 29263 (2008) Ley que modifica diversos artículos del Código Penal y la Ley General del Ambiente, artículo 310. Government of Peru. [In Spanish] Available at https://cdn.www.gob.pe/uploads/document/file/385602/Ley_N__2926320191013-25586-1xkw7bj.pdf [accessed 25 August 2021]

Littell JS, McKenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications 19, 1003–1021.
Climate and wildfire area burned in western US ecoprovinces, 1916–2003.Crossref | GoogleScholarGoogle Scholar |

Llauca H, Lavado-Casimiro W, Montesinos C, Santini W, Rau P (2021) PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020). Water 13, 1048
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020).Crossref | GoogleScholarGoogle Scholar |

Manta MI, Kometter R, Navia A (2018) Evaluation of wildfire danger in the Peruvian Andes: First step for its reduction and adaptation. In ‘VIII International Conference on Forest Fire Research in: Coimbra, Portugal’. (Ed. DX Viegas) pp. 52–53. (University of Coimbra)
| Crossref |

Manz B, Páez-Bimos S, Horna N, Buytaert W, Ochoa-Tocachi B, Lavado-Casimiro W, Willems B (2017) Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes. Journal of Hydrometeorology 18, 2469–2489.
Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes.Crossref | GoogleScholarGoogle Scholar |

Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. International Journal of Climatology 36, 1033–1050.
Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts.Crossref | GoogleScholarGoogle Scholar |

Martin-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. International Journal of Climatology 24, 959–971.
Spatial distribution of a daily precipitation concentration index in peninsular Spain.Crossref | GoogleScholarGoogle Scholar |

McKee TB, Doesken NJ, Kliest J (1993) The relationship of drought frequency and duration to time scales. In ‘Proceedings of the 8th Conference of Applied Climatology’, 17–22 January, Anaheim, CA. pp. 179–184. (American Meteorological Society: Boston, MA)

Mendiola MQ (2004) Highland grassland vegetation in the northwestern Andes of Argentina. Mountain Research and Development 24, 243–250.
Highland grassland vegetation in the northwestern Andes of Argentina.Crossref | GoogleScholarGoogle Scholar |

MINAGRI (2012) D. S. 16-2002 - AG. Aprueban reglamento de manejo de los residuos sólidos del sector agrario. Available at https://busquedas.elperuano.pe/normaslegales/aprueban-reglamento-de-manejo-de-los-residuos-solidos-del-se-decreto-supremo-n-016-2012-ag-866098-1/ [25 August 2021]

MINAGRI (2020) ‘Impacto de la covid-19 en la actividad agraria y perspectivas.’ (Dirección general de políticas agrarias, Dirección de Estudios Económicos e Información Agraria, II informe -Ministerio de Agricultura) [In Spanish] [25 June 2022]

MINAM (2018a) Memoria Descriptiva del Mapa Nacional de Ecosistemas del Perú. [In Spanish] Available at https://sinia.minam.gob.pe/normas/aprueban-mapa-nacional-ecosistemas-memoria-descriptiva-las-definiciones [accessed 25 August 2021]

MINAM (2018b) Dirección General de Ordenamiento Territorial Ambiental (DGOTA). Registro histórico de incendios sobre la cobertura vegetal a nivel nacional. Ministerio del Ambiente-Perú. 1–4. [In Spanish] Available at http://geoservidor.minam.gob.pe/monitoreo-y-evaluacion/registros-historicos-cfoi/

Molina C, Kraus D (2010) ‘Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programmes in Selected Case-Study Regions in Europe.’ (European Forest Institute)

Molina EG, Little AV (1981) Geoecology of the Andes: The natural science basis for research planning. Mountain Research and Development 1, 115–144.
Geoecology of the Andes: The natural science basis for research planning.Crossref | GoogleScholarGoogle Scholar |

Montesinos-Tubée DB, Jans H (2015) Treasures of Peru. The Alpine Gardener. Journal of the Alpine Garden Society 83, 174–191.

Oliveras I, Girardin C, Doughty CE, Cahuana N, Arenas CE, Oliver V, Huaraca Huasco W, Malhi Y (2014) Andean grasslands are as productive as tropical cloud forests. Environmental Research Letters 9, 115011
Andean grasslands are as productive as tropical cloud forests.Crossref | GoogleScholarGoogle Scholar |

Padilla FM, Mommer L, de Caluwe H, et al. (2019) Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community. Oecologia 191, 177–190.
Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community.Crossref | GoogleScholarGoogle Scholar |

Penman TD, Clarke H, Cirulis B, Boer MM, Price OF, Bradstock RA (2020) Cost-effective prescribed burning solutions vary between landscapes in eastern Australia. Frontiers in Forests and Global Change 3, 79
Cost-effective prescribed burning solutions vary between landscapes in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Pilliod DS, Welty JL, Arkle RS (2017) Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Ecology and Evolution 7, 8126–8151.
Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends.Crossref | GoogleScholarGoogle Scholar |

Pivello VR, Vieira I, Christianini AV, Ribeiro DB, da Silva Menezes L, Berlinck CN, Melo FPL, Marengo JA, Tornquist CG, Tomas WM, Overbeck GE (2021) Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation 19, 233–255.
Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies.Crossref | GoogleScholarGoogle Scholar |

Price OF, Pausas JG, Govender N, Flannigan M, Fernandes PM, Brooks ML, Bird RB (2015) Global patterns in fire leverage: the response of annual area burnt to previous fire. International Journal of Wildland Fire 24, 297–306.
Global patterns in fire leverage: the response of annual area burnt to previous fire.Crossref | GoogleScholarGoogle Scholar |

Rago MM, Urretavizcaya MF, Lederer NS, Defossé GE (2020) Plant community response to forest fuel management in Patagonian pine plantations. Frontiers in Forests and Global Change 3, 55
Plant community response to forest fuel management in Patagonian pine plantations.Crossref | GoogleScholarGoogle Scholar |

Rau P, Bourrel L, Labat D, Melo P, Dewitte B, Frappart F, Lavado W, Felipe O (2017) Regionalization of rainfall over the Peruvian Pacific slope and coast. International Journal of Climatology 37, 143–158.
Regionalization of rainfall over the Peruvian Pacific slope and coast.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Morata C, Díaz HF, Ballesteros-Canovas JA, et al. (2019) The anomalous 2017 coastal El Niño event in Peru. Climate Dynamics 52, 5605–5622.
The anomalous 2017 coastal El Niño event in Peru.Crossref | GoogleScholarGoogle Scholar |

Rojas Y, Minder JR, Campbell LS, et al. (2021) Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile. Atmospheric Research 253, 105454
Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile.Crossref | GoogleScholarGoogle Scholar |

Román-Cuesta RM, Carmona-Moreno C, Lizcano G, New M, Silman M, Knoke T, Malhi Y, Oliveras I, Asbjornsen H, Vuille M (2014) Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing. Global Change Biology 20, 1929–1942.
Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.Crossref | GoogleScholarGoogle Scholar |

Roseveare GM (1950) Plants of the Peruvian Andes. Nature 165, 460–61.
Plants of the Peruvian Andes.Crossref | GoogleScholarGoogle Scholar |

Saavedra M, Junquas C, Espinoza JC, Silva Y (2020) Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmospheric Research 234, 104711
Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes.Crossref | GoogleScholarGoogle Scholar |

SERFOR (2018) ‘Plan de prevención y reducción de riesgos de incendios forestales 2019–2022.’ (Servicio Nacional Forestal y de Fauna Silvestre) [In Spanish]

Silva FB, Shimabukuro YE, Aragão L, Anderson LO, Pereira G, Cardozo F, Arai E (2013) Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series. Environmental Research Letters 8, 024011
Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series.Crossref | GoogleScholarGoogle Scholar |

Stolton S, Randall J, Dudley N (2008) Protected areas, climate change, and disaster mitigation. Policy Matters 16, 82–91.

Suescún D, Villegas JC, León JD, et al. (2017) Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Regional Environmental Change 17, 827–839.
Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes.Crossref | GoogleScholarGoogle Scholar |

Sulca J, Vuille M, Timm OE, Dong B, Zubieta R (2021) Empirical-statistical downscaling of Austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin. Journal of Meteorology and Climatology 60, 65–85.
Empirical-statistical downscaling of Austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin.Crossref | GoogleScholarGoogle Scholar |

Swenson JJ, Young BE, Beck S, et al. (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecology 12, 1
Plant and animal endemism in the eastern Andean slope: challenges to conservation.Crossref | GoogleScholarGoogle Scholar |

Takahashi K, Martínez AG (2019) The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics 52, 7389–7415.
The very strong coastal El Niño in 1925 in the far-eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Tapia M, Ruiz C (1985) ‘Producción y manejo de forrajes en los Andes del Perú’. Proyecto de Investigaciones de Sistemas Agropecuarios Andinos. Universidad Nacional, San Cristóbal de Huamanga. [In Spanish] Available at http://hdl.handle.net/10625/9937

Tedim F, Leone V (2020) The dilemma of wildfire definition: what it reveals and what it implies. Frontiers in Forests and Global Change 3, 553116
The dilemma of wildfire definition: what it reveals and what it implies.Crossref | GoogleScholarGoogle Scholar |

Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127–150.
Red and photographic infrared linear combinations for monitoring vegetation.Crossref | GoogleScholarGoogle Scholar |

van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth System Science Data 9, 697–720.
Global fire emissions estimates during 1997–2016.Crossref | GoogleScholarGoogle Scholar |

Van Leeuwen WJD, Hartfield K, Miranda M, Meza FJ (2013) Trends and ENSO/AAO Driven Variability in NDVI Derived Productivity and Phenology alongside the Andes Mountains. Remote Sensing 5, 1177–1203.
Trends and ENSO/AAO Driven Variability in NDVI Derived Productivity and Phenology alongside the Andes Mountains.Crossref | GoogleScholarGoogle Scholar |

Vermote EF, Roger JC, Ray JP (2015) MODIS Surface Reflectance User’s Guide Collection 6. Available at https://lpdaac.usgs.gov/documents/306/MOD09_User_Guide_V6.pdf [accessed 13 January 2023]

Villagra P, Paula S (2021) Wildfire management in Chile: Increasing risks call for more resilient communities. Environment: Science and Policy for Sustainable Development 63, 4–14.
Wildfire management in Chile: Increasing risks call for more resilient communities.Crossref | GoogleScholarGoogle Scholar |

Wilcox B (1984) The Puna High-Elevation Grassland of the Andes. Rangelands 6, 99–101.

Wilcox BP, Bryant FC, Wester D, Allen BL (1986) Grassland communities and soils on a high elevation grassland of central Peru. Phytologia 61, 231–250.

Wolfe RE, Roy DP, Vermote E (1998) MODIS land data storage, gridding, and compositing methodology: Level 2 Grid. IEEE Transactions on Geoscience and Remote Sensing 36, 1324–1338.
MODIS land data storage, gridding, and compositing methodology: Level 2 Grid.Crossref | GoogleScholarGoogle Scholar |

WWE (2020) En 2020, los incendios forestales podrían ser peores que en 2019 para Sudamérica y el mundo. [In Spanish] Available at https://www.worldwildlife.org/descubre-wwf/historias/en-2020-los-incendios-forestales-podrian-ser-peores-que-en-2019-para-sudamerica-y-el-mundo [accessed 25 August 2021]

Zhang J, Zuo X, Zhao X, et al. (2020) Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland. Scientific Reports 10, 9026
Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland.Crossref | GoogleScholarGoogle Scholar |

Zubieta R, Getirana A, Espinoza JC, Lavado W (2015) Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador. Journal of Hydrology 528, 599–612.
Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador.Crossref | GoogleScholarGoogle Scholar |

Zubieta R, Getirana A, Espinoza JC, Lavado-Casimiro W, Aragon L (2017a) Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset. Hydrology and Earth System Sciences 21, 3543–3555.
Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset.Crossref | GoogleScholarGoogle Scholar |

Zubieta R, Saavedra M, Silva Y, Giraldez L (2017b) Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: Central Andes of Peru. Stochastic Environmental Research and Risk Assessment 31, 1305–1318.
Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: Central Andes of Peru.Crossref | GoogleScholarGoogle Scholar |

Zubieta R, Prudencio F, Alarco G, Reupo J (2019a) Ocurrencia de incendios forestales durante eventos El Niño. Boletín Técnico ‘Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño’. Instituto Geofísico del Peru 6, 5–9. [In Spanish]

Zubieta R, Saavedra M, Espinoza JC, Ronchail J, Sulca J, Drapeau G, et al. (2019b) Assessing precipitation concentration in the Amazon Basin from different satellite-based data sets. International Journal of Climatology 39, 3171–3187.
Assessing precipitation concentration in the Amazon Basin from different satellite-based data sets.Crossref | GoogleScholarGoogle Scholar |

Zubieta R, Prudencio F, Ccanchi Y, Saavedra M, Sulca J, Reupo J, Alarco G (2021) Potential conditions for fire occurrence in vegetation in the Peruvian Andes. International Journal of Wildland Fire 30, 836–849.
Potential conditions for fire occurrence in vegetation in the Peruvian Andes.Crossref | GoogleScholarGoogle Scholar |

Zulkafli Z, Buytaert W, Onof C, Manz B, Tarnavsky E, Lavado W, Guyot JL (2014) A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River Basins. Journal of Hydrometeorology 15, 581–592.
A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River Basins.Crossref | GoogleScholarGoogle Scholar |