Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Construction of empirical models for predicting Pinus sp. dead fine fuel moisture in NW Spain. I: Response to changes in temperature and relative humidity

Ana Daría Ruiz González A C , Jose Antonio Vega Hidalgo B and Juan Gabriel Álvarez González A
+ Author Affiliations
- Author Affiliations

A Departamento de Ingeniería Agroforestal, Escuela Politécnica Superior, Universidad de Santiago de Compostela, E-27002 Lugo, Spain.

B Departamento de Protección ambiental, CINAM-Lourizán, Xunta de Galicia, E-36080 Pontevedra, Spain.

C Corresponding author. Email: anadaria.ruiz@usc.es

International Journal of Wildland Fire 18(1) 71-83 https://doi.org/10.1071/WF07101
Submitted: 25 July 2007  Accepted: 27 May 2008   Published: 17 February 2009

Abstract

A statistical methodology is presented for developing moisture content models from repeated measurements made on non-destructive repeated measurements. Empirical vapour exchange models for dead fine fuels generated in Pinus radiata and P. pinaster stands are developed by using the methodology proposed. Experiments were carried out with five types of fuel particles (surface and aerial fine fuels) of the two species of pine, in Lugo (Galicia, north-west Spain). The samples of each fuel type were collected and placed inside an instrument shelter so that vapour exchange with the atmosphere was the only source of moisture in the fuels. Statistical criteria obtained from the residuals indicated that the fitted models were acceptable. The cross-validation results also confirmed the validity of the fitted models. The model underlined the decisive role played by the time lag in dead fine fuel moisture content variation.

Additional keywords: fire behaviour, fire danger, vapour exchange.


Acknowledgements

The data management was partly funded by FIRE PARADOX (a European integrated fire management project from the VI Research Frame Program of the European Commission-018505). We are sincerely grateful to three anonymous referees for their useful suggestions and comments that improved an earlier version of the manuscript.


References


Albini FA (1985) A model for fire spread in wildland fuels by radiation. Combustion Science and Technology  42, 229–258.
Crossref | GoogleScholarGoogle Scholar | Anderson HE (1990) Predicting equilibrium moisture content of some foliar forest litter in the northern Rocky Mountains. USDA Forest Service, Intermountain Research Station, Research Paper INT-429. (Ogden, UT)

Bates DM, Watts DG (1988) ‘Non-linear Regression Analysis and its Applications.’ (Wiley: New York)

Beck JA, Armitage OB (2004) Diurnal fine fuel moisture and FFMC characteristics at northern latitudes. In ‘Proceedings of the 22nd Tall Timbers Fire Ecology Conference: Fire in Temperate, Boreal and Montane Ecosystems’, 15–18 October 2001, Kanakaskis, AB, Canada. (Eds RT Engstrom, WJ de Groot) pp. 211–221. (Tall Timber Research Station: Tallahasee, FL)

Blackmarr WH (1972) Moisture content influences, ignitability of slash pine litter. USDA Forest Service, Southeastern Forest Experiment Station, Research Note SE-173. (Asheville, NC)

Bradshaw LS, Deeming JE, Burgan RE, Cohen JD (1983) The 1978 National Fire Danger Rating System: technical documentation. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-169. (Ogden, UT)

Burgan RE (1987) A comparison of procedures to estimate fine dead fuel moisture for fire behaviour predictions. South African Forestry Journal  142, 34–40.
Chandler C, Cheney P, Thomas P, Trabaud L, Williams D (1983) ‘Fire in Forestry: Forest Fire Behavior and Effects.’ (Wiley: New York)

Cheney NP, Gould JS , Catchpole WR (1998) Prediction of fire spread in grassland. International Journal of Wildland Fire  8(1), 1–13.
Crossref | GoogleScholarGoogle Scholar | Draper NR, Smith H (1998) ‘Applied Regression Analysis.’ 3rd edn. (Wiley: New York)

Fernandes P, Botelho H, Loureiro C (2002) ‘Manual de Formaçao para a Técnica do Fogo Controlado.’ (UTAD: Vila-Real) Available at http://home.utad.pt/~floresta/GFF/Lab_Fog_Fl.html#public [Verified 9 February 2009]

Fosberg MA (1970) Drying rates of heartwood below fiber saturation. Forest Science  16(1), 57–63.
Fosberg MA (1971) Moisture content calculations for the 100-hour timelag fuel in fire danger rating. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Research Note RM-199. (Fort Collins, CO)

Fosberg MA, Deeming JE (1971) Derivation of the 1- and 10-hour timelag fuel moisture calculations for fire danger rating. USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, Research Note RM-207. (Fort Collins, CO)

Fosberg MA, Rothermel RC , Andrews PL (1981) Moisture content calculations for 1000-hour timelag fuels. Forest Science  27(1), 19–26.
Hartford RA, Rothermel RC (1991) Fuel moisture as measured and predicted during the 1988 fires in Yellowstone Park. USDA Forest Service, Intermountain Research Station, Research Note INT-396. (Ogden, UT)

Hatton TJ, Viney NR (1988) Modelling fine, dead, surface fuel moisture. In ‘Proceedings of the Conference on Bushfire Modelling and Fire Danger Rating Systems’, 11–12 July 1988, Canberra. (Eds NP Cheney, AM Gill) pp. 119–125. (CSIRO Division of Forestry: Canberra)

Hatton TJ, Viney NR, Catchpole EA , de Mestre NJ (1988) The influence of soil moisture on Eucalyptus leaf litter moisture. Forest Science  34(2), 292–301.
Huang S (1997) Development of a subregion-based compatible height–site index–age model for black spruce in Alberta. Alberta Land and Forest Service, Forest Management Research Note Number 5, Publication Number T/352. (Edmonton, AB)

Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In ‘Modelling Forest Systems’. (Eds A Amaro, D Reed, P Soares) pp. 271–293. (CAB International: Wallingford, UK)

Judge GG, Carter R, Griffiths WE, Lutkepohl H, Lee TC (1988) ‘Introduction to the Theory and Practice of Econometrics.’ (Wiley: New York)

Kleinbaum DG, Kupper LL, Muller KE (1988) ‘Applied Regression Analysis and other Multivariable Methods.’ (PSW-Kent Publishing Company: Boston)

Kozak A (1997) Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Canadian Journal of Forest Research  27, 619–629.
Crossref | GoogleScholarGoogle Scholar | Kunkel KE (2001) Surface energy budget and fuel moisture. In ‘Forest Fires: Behavior and Ecological Effects’. (Eds EA Johnson, K Miyanishi) pp. 303–349. (Academic Press: San Diego, CA)

Marsden-Smedley JB , Catchpole W (2001) Fire modeling in Tasmanian buttongrass moorlands. III Dead fuel moisture. International Journal of Wildland Fire  10, 241–253.
Crossref | GoogleScholarGoogle Scholar | McArthur AG (1967) Fire behaviour in eucalypt forests. Department of National Development, Commonwealth of Australia, Forestry and Timber Research Bureau, Leaflet 107. (Canberra)

Ministerio de Medio Ambiente (2007) Estadísticas Generales sobre Incendios Forestales de la Dirección General para la Biodiversidad. Available at http://www.mma.es/portal/secciones/biodiversidad/defensa_incendios/estadisticas_incendios/#2 [Verified 14 January 2007]

Myers RH (1990) ‘Classical and Modern Regression with Applications.’ 2nd edn. (Duxbury Press: Belmont, CA)

Nelson RM (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research  30, 1071–1087.
Crossref | GoogleScholarGoogle Scholar | Nelson RMJr (2001) Water relations of forest fuels. In ‘Forest Fires: Behavior and Ecological Effects’. (Eds EA Johnson, K Miyanishi) pp. 79–149. (Academic Press: San Diego, CA)

Neter J, Wasserman W, Kutner MH (1990) ‘Applied Linear Statistical Models: Regression, Analysis of Variance and Experimental Designs.’ 3rd edn. (McGraw-Hill: Boston)

Parresol BR, Vissage JS (1998) White pine site index for the southern forest survey. USDA Forest Service, Southern Research Station, Research Paper SRS-10. (Asheville, NC)

Pech G (1989) A model to predict the moisture content of reindeer lichen. Forest Science  35, 1014–1028.
Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115. (Ogden, UT)

Rothermel RC, Wilson RA, Morris GA, Sackett SS (1986) Modeling moisture content of fine dead wildland fuels: input to the BEHAVE Fire Prediction System. USDA Forest Service, Intermountain Research Station, Research Paper INT-359. (Ogden, UT)

Ruiz AD (2005) La predicción de la humedad en los restos forestales combustibles; aplicación a masas arboladas en Galicia. PhD thesis, Universidad Politécnica de Madrid. Available at http://oa.upm.es/302/ [Verified 9 February 2009]

Ruiz AD, Vega JA (2006) Moisture content of dead fuels in Pinus radiata and Pinus pinaster stands; intrinsic factors of variation. In ‘Proceedings of the 5th International Conference on Forest Fire Research’, 27–30 November 2006, Figueira da Foz, Portugal. (Ed. DX Viegas) (Elsevier: Amsterdam)

Ruiz AD, Vega JA (2007) Modelos de predicción de la humedad de los combustibles muertos: Fundamentos y aplicación. Ministerio de Educación y Ciencia, Instituto Nacional de Investigación Agraria y Alimentaria. Monografías INIA: Serie Forestal Número 15. (Madrid)

Saglam B, Bilgili E, Kuçuk O , Dincdurmaz B (2006) Determination of surface fuels moisture contents based on weather conditions. Forest Ecology and Management  234(Suppl. 1), S75.
Crossref | GoogleScholarGoogle Scholar | SAS Institute (2004) ‘SAS/ETS 9.1 User’s Guide.’ (SAS Institute, Inc.: Cary, NC)

Schröder J, Rodríguez R , Vega G (2002) An age-independent basal area increment model for maritime pine trees in north-western Spain. Forest Ecology and Management  157, 55–64.
Crossref | GoogleScholarGoogle Scholar | Simard AJ (1968) The moisture content of forest fuels – I. A review of the basic concepts. Canadian Department of Forest and Rural Development, Forest Fire Research Institute, Information Report FF-X-14. (Ottawa, ON)

Simard AJ , Main WA (1982) Comparing methods of predicting jack pine slash moisture. Canadian Journal of Forest Research  12, 793–802.
Crossref | GoogleScholarGoogle Scholar | Sneeuwjagt RJ, Peet GB (1998) Forest Fire Behaviour Tables for Western Australia. Western Australian Department of Conservation and Land Management. (Perth)

Tolhurst KG, Cheney NP (1999) Synopsis of the Knowledge Used in Prescribed Burning in Victoria. Department of Natural Resources and Environment. (Melbourne)

Trabaud L (1976) Inflamabilité et combustibilité des principales espèces des garrigues de la region Méditerranéenne. Acta Oecologica  11(2), 117–136.
Valette JC (1992) Inflammabilities of Mediterranean species. In ‘Forest Fire Risk and Management: European School of Climatology and Natural Hazard Course’, 27 May–4 June 1992, Halkidiki, Greece. (Eds P Balabanis, G Eftichidis, R Fantechi) pp. 51–64. (European Commission: Halkidiki)

van Laar A (1991) ‘Forest Biometry.’ (University of Stellenbosch: South Africa)

Van Wagner CE (1972) Equilibrium moisture contents of some fine forest fuels in eastern Canada. Canadian Forestry Service, Petawawa Forest Experimental Station, Information Report PS-X-36. (Chalk River, ON)

Van Wagner CE, Pickett TL (1985) Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Forestry Technical Report 33. (Ottawa, ON)

Vanclay J , Skovsgaard JP (1997) Evaluating forest growth models. Ecological Modelling  98, 1–12.
Crossref | GoogleScholarGoogle Scholar | Vega JA (1985) Datos preliminares sobre comportamiento del fuego prescrito para la reducción de combustible bajo pinares en Galicia. In ‘Estudios Sobre Prevención y Efectos Ecológicos de Incendios Forestales’. Monografía ICONA, pp. 51–59. (MAPA: Madrid)

Vega JA, Casal M (1986) Contraste de estimadores de humedad del combustible forestal fino muerto en montes arbolados de Galicia (NW de España). In ‘Documentos del Seminario sobre Métodos y Equipos para la Prevención de Incendios Forestales’, 30 September–4 October 1986, Valencia. (Eds UN/FAO/OIT) pp. 94–97. (ICONA: Madrid)

Vega JA, Bará S, Alonso M, Fonturbel MT , García P (1987) Preliminary results of a study on short-term effects of prescribed fire in pine stands in NW Spain. Ecologia Mediterranea  XII(4), 177–188.
Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2005) ‘Regression Methods in Biostatistics.’ (Springer: New York)

Wilson RA (1985) Observations of extinction and marginal burning states in free-burning porous fuel beds. Combustion Science and Technology  44, 179–193.
Crossref | GoogleScholarGoogle Scholar |

Wotton BM, Stocks BJ , Martell DL (2005) An index for tracking sheltered forest floor moisture within the Canadian Forest Fire Weather Index System. International Journal of Wildland Fire  14, 169–182.
Crossref | GoogleScholarGoogle Scholar |