Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain

J. Reyes Ruiz-Gallardo A B , Santiago Castaño A and Alfonso Calera A
+ Author Affiliations
- Author Affiliations

A Remote Sensing and GIS Department, Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.

B Corresponding author. Telephone: +34 967 599200, ext: 2640; fax: +34 967 599229; email: josereyes.ruiz@uclm.es

International Journal of Wildland Fire 13(3) 241-252 https://doi.org/10.1071/WF02057
Submitted: 9 October 2002  Accepted: 24 February 2004   Published: 16 November 2004

Abstract

Wildland fires are one of the major causes of ecosystem degradation, especially in semiarid climates, where the erosion hazard is high. The identification of potential erosion zones is typically difficult as it requires expensive field and laboratory work. This paper proposes a methodology based on remote sensing and GIS techniques, which permits speedy identification of erosional areas in a semi-automatic way, tested in a large burn scar in south-eastern Spain. Inputs were slope, aspect, and fire severity. In order to obtain the latter a new method has been proposed, based on the difference in NDVI between two images (acquired before and after the fire event). Combining these maps in a GIS, a Forest Intervention Priority map (FIP) is produced, which identifies areas of high erosion potential. Field work was conducted to assess the method. Results indicate that the applied methodology reliably predicted the extent of very severe fire and, further, was generally useful for identifying sites of significant erosion. Additional work is required to refine: (1) remotely sensed fire severity thresholds, particularly for other Mediterranean forest systems and substrate conditions; and (2) associated mapping tools for informing post-fire management applications.

Additional keywords: aspect; erosion; fire severity; Pinus halepensis; Pinus pinaster; slope; Yeste.


References


Andreu V, Imeson AC , Rubio JL (2001) Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. CATENA  44, 69–84.
Crossref | GoogleScholarGoogle Scholar | Bibby JS, Mackney D (1969) ‘Land use capability classification.’ The Soil Survey Technical Monograph 1. Available online at http://www.soils.org.uk/org/1969lc4agri.doc [Verified 13 September 2004]

Bobbe T, Lachowski H, Maus P, Greer J , Dull C (2001) A primer on mapping vegetation using remote sensing. International Journal of Wildland Fire  10, 277–287.
Crossref | GoogleScholarGoogle Scholar | Caetano MS, Mertes LAK, Pereira JMC (1994) Using spectral mixture analysis for fire severity mapping. In ‘Proceedings of the 2nd International Conference on Forest Fire Research’. pp. 667–677 (Coimbra, Portugal)

Calera A, Martínez C , Melia J (2001) A procedure for obtaining green plant cover: relation to NDVI in a case study for barley. International Journal of Remote Sensing  22, 3357–3362.
Crossref | GoogleScholarGoogle Scholar | CAMA-CM (1994) ‘Parte del incendio forestal de Yeste (Albacete).’ Consejería de Agricultura y Medio Ambiente (CAMA). Junta de Comunidades de Castilla-La Mancha (CM). Albacete. España.

Carlson TN , Ripley D (1997) On the relation between NDVI, fractional vegetation cover and leaf area index. Remote Sensing of Environment  62, 241–252.
Crossref | GoogleScholarGoogle Scholar | Florez M (2000) ‘Análisis de las relaciones existentes entre variables climáticas y del medio físico y la incidencia de los incendios forestales en el sector occidental de Castilla y León.’ PhD thesis, Facultad de Ciencias, Universidad de Valladolid.

French NHF, Kasischke ES, Bourgeau-Chavez LL , Berry D (1995) Mapping the location of wildfires in Alaskan boreal forests using AVHRR imagery. International Journal of Wildland Fire  5, 55–61.
Hernando C (2000) Combustibles forestales: inflamabilidad. In ‘La defensa contra incendios forestales. Fundamentos y experiencias’. (Coord. R Vélez) pp. 6.3–6.15. (McGraw-Hill: Madrid)

Herranz JM, De las Heras Ibañez J , Martínez Sánchez JJ (1991a) Efecto de la orientación sobre la recuperación de la vegetación natural tras el fuego en el Valle del Río Tus (Yeste, Albacete). Ecología  5, 111–124.
Key CH, Benson NC (2004a) Landscape assessment: ground measure of severity, the Composite Burn Index. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, LJ Gangi) USDA Forest Service, Rocky Mountain Research Station General Technical Report. (Ogden, UT) (In press)

Key CH, Benson NC (2004b) Landscape assessment: remote sensing of severity, the Normalized Burn Ratio. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, LJ Gangi) USDA Forest Service, Rocky Mountain Research Station General Technical Report. (Ogden, UT) (In press)

Khusla JD , Ripple WJ (1998) Assessing wildfire effects with Landsat Thematic Mapper data. International Journal of Remote Sensing  19, 2493–2507.
Crossref | GoogleScholarGoogle Scholar | Longley PA, Goodchild MF, Maguire DJ, Rhind DW (Eds) (1999) ‘Geographical Information Systems. Principles and technical issues.’ (John Wiley: New York, USA)

López MJ , Caselles V (1991) Mapping/burns and natural reforestation using Thematic Mapper data. Geocarto International  1, 31–37.
Moody JA (2001) Sediment transport regimes after a wildfire in steep mountainous terrain. In ‘Proceedings of the seventh Federal Interagency Sedimentation Conference’. pp. 41–48. (Reno, NV)

MOPT (Ministerio de Obras Públicas y Transporte) (1992) ‘Guía para la elaboración de estudios del medio físico. Contenido y metodología.’ Monografías de la Secretaría de Estado para las Políticas del Agua y del Medio Ambiente. (Ministerio de Obras Públicas y Transportes: Madrid)  

Munn DA, McLean EO, Ramírez A , Logan TJ (1973) Effect of soil, cover, slope, an rainfall factors on soil and phosphorus movement under simulated rainfall conditions. Soil Science Society American Proceedings  37, 428–443.
Navarro RM, Fernández F, Escuin S (2001) Evaluación de daños producidos por incendios forestales mediante imágenes de satélite. Propuesta de restauración. In ‘III Congreso forestal Español, 25–28 September 2001’. pp. 482–487. (Granada, Spain)

Odum EP (1973) ‘Ecología.’ (CECSA: México D.F., México)  

Patterson MW , Yool SR (1998) Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: a comparison of linear transformation techniques. Remote Sensing of Environment  65, 132–142.
Crossref | GoogleScholarGoogle Scholar | Rodríguez-Estrella T (1979) ‘Geología e hidrología del Sector de Alcaraz-Liétor-Yeste (Provincia de Albacete). Síntesis Geológica de la zona Prebética.’ PhD thesis, Universidad de Madrid, Madrid.

Rogan J , Franklin J (2001) Mapping wildfire severity in southern California forest and shrublands using Enhanced Thematic Mapper Imagery. Geocarto International  16, 89–99.
Ustin SL, Smith MO, Jacquemoud S, Verstraete M, Govaerts Y (1998) Geobotany: vegetation mapping for earth sciences. In ‘Remote sensing for the earth sciences, manual of remote sensing’. 3rd edn. (Ed. AN Rencz) pp. 189–248. (John Wiley: New York, USA)

Vélez R (2000) El riesgo de erosión provocado por los incendios forestales. In ‘La defensa contra incendios forestales. Fundamentos y experiencias’. (Coord. R Vélez) pp. 4.93–4.100. (McGraw-Hill: Madrid)

Whelan RJ (1995) ‘The ecology of fire.’ 3rd edn. (Cambridge University Press: London)

White JD, Ryan KC, Key CC , Running SW (1996) Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire  6, 125–136.


Wischmeier WH , Smith DD (1958) Rainfall energy and its relation to soil loss. Transactions of the American Geophysical Union  39, 285–291.


Woodham RJ , Grey MH (1987) An analytic method for radiometric correction of satellite multispectral scanner data. IEEE Transactions on Geoscience and Remote Sensing  25, 258–271.