Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Moisture content variation of ground vegetation fuels in boreal mesic and sub-xeric mineral soil forests in Finland

Henrik Lindberg A E , Tuomas Aakala B C and Ilkka Vanha-Majamaa D
+ Author Affiliations
- Author Affiliations

A Häme University of Applied Sciences, School of Bioeconomy, Visamäentie 35 A, PO Box 230, FI-13100 Hämeenlinna, Finland.

B Department of Forest Sciences, Latokartanonkaari 7, PO Box 27, FI-00014 University of Helsinki, Finland.

C Present address: University of Eastern Finland, School of Forest Sciences, PO Box 111 FI-80101 Joensuu, Finland.

D Natural Resources Institute Finland (Luke) Latokartanonkaari 9, FI-00790 Helsinki, Finland.

E Corresponding author: Email: henrik.lindberg@hamk.fi

International Journal of Wildland Fire 30(4) 283-293 https://doi.org/10.1071/WF20085
Submitted: 6 June 2020  Accepted: 25 December 2020   Published: 1 February 2021

Abstract

Forest fire risk in Finland is estimated with the Finnish Forest Fire Index (FFI), which predicts the fuel moisture content (FMC) of the forest floor. We studied the FMC variation of four typical ground vegetation fuels, Pleurozium schreberi, Hylocomium splendens, Dicranum spp., and Cladonia spp., and raw humus in mature and recently clear-cut stands. Of these, six were sub-xeric Pinus sylvestris stands, and six mesic Picea abies stands. We analysed the ability of the FFI to predict FMC and compared it with the widely applied Canadian Fire Weather Index (FWI). We found that in addition to stand characteristics, ground layer FMC was highly dependent on the species so that Dicranum was the moistest, and Cladonia the driest. In the humus layer, the differences among species were small. Overall, the FWI was a slightly better predictor of FMC than the FFI. While the FFI generally predicted ground layer FMC well, the shape of the relationship varied among the four species. The use of auxiliary variables thus has potential in improving predictions of ignitions and forest fire risk. Knowledge of FMC variation could also benefit planning and timing of prescribed burns.

Keywords: FFI, fire risk, FMC, forest fire index, forest type, FWI, humus, Norway spruce, prescribed burning, Scots pine, stand structure.


References

Ahti T, Hamet-Ahti L, Jalas J (1968) Vegetation zones and their sections in north-western Europe. Annales Botanici Fennici 5, 169–211.

Busby JR, Whitfield DWA (1978) Water potential, water content, and net assimilation of some boreal forest mosses. Canadian Journal of Botany 56, 1551–1558.
Water potential, water content, and net assimilation of some boreal forest mosses.Crossref | GoogleScholarGoogle Scholar |

Dimitrakopoulos AP, Bemmerzouk AM, Mitsopoulos ID (2011) Evaluation of the Canadian fire Weather Index system in an eastern Mediterranean environment. Meteorological Applications 18, 83–93.
Evaluation of the Canadian fire Weather Index system in an eastern Mediterranean environment.Crossref | GoogleScholarGoogle Scholar |

Ferguson SA, Ruthford JE, McKay SJ, Wright D, Wright C, Ottmar R (2002) Measuring moisture dynamics to predict fire severity in longleaf pine forests. International Journal of Wildland Fire 11, 267–279.
Measuring moisture dynamics to predict fire severity in longleaf pine forests.Crossref | GoogleScholarGoogle Scholar |

Finnish Forest Research Institute (2014) Finnish statistical yearbook of forestry 2014. Available at http://urn.fi/URN:ISBN:978-951-40-2506-8

Finnish Forest Research Institute (1992) Yearbook of forest statistics 1990–1991. Available at http://urn.fi/URN:ISBN:951-40-1205-4

Granström A, Schimmel J (1998) Utvärdering av det kanadensiska brandrisksystemet – testbränningar och uttorkningsanalyser. P21–244/98. (In Swedish with English abstract: Assessment of the Canadian Forest Fire Danger Rating System for Swedish fuel conditions) (Rescue Service: Karlstad, Sweden)

Heatwole H (1966) Moisture exchange between the atmosphere and some lichens of the genus Cladonia. Mycologia 58, 148–156.
Moisture exchange between the atmosphere and some lichens of the genus Cladonia.Crossref | GoogleScholarGoogle Scholar |

Heikinheimo M, Venäläinen A, Tourula T (1998) A soil moisture index for the assessment of forest fire potential in the boreal zone. In ‘Proceedings of the international symposium on applied agrometeorology and agroclimatology (Volos, Greece)’. (Ed. NR Dalezios) EUR 18328‐COST 77, 79, 711, pp. 549–555 (Office for Official Publication of the European Commission: Luxembourg).

Hille MG, den Ouden J (2005) Fuel load, humus consumption and humus moisture dynamics in central European Scots pine stands. International Journal of Wildland Fire 14, 153–159.
Fuel load, humus consumption and humus moisture dynamics in central European Scots pine stands.Crossref | GoogleScholarGoogle Scholar |

Hille MG, Stephens S (2005) Mixed conifer forest duff consumption during prescribed fires: tree crown impacts. Forest Science 51, 417–424.

Juvakka M, Viinikainen J, Puputti I, Kuupakko S (1995) Vesijaon tutkimusalue, hoito- ja käyttösuunnitelma 1994–2003. [Plan for the management and use of forests in Vesijako research area 1994–2003]. Metlan tutkimusmetsien julkaisusarja 5. (Finnish Forest Research Institute: Vantaa). ISSN 1238–0830. [In Finnish]

Kilpeläinen A, Kellomäki S, Strandman H, Venäläinen A (2010) Climate change impacts on forest fire potential in boreal conditions in Finland. Climatic Change 103, 383–398.
Climate change impacts on forest fire potential in boreal conditions in Finland.Crossref | GoogleScholarGoogle Scholar |

Kuuluvainen T, Lindberg H, Vanha-Majamaa I, Keto-Tokoi P, Punttila P (2019) Low-level retention forestry, certification and biodiversity: case Finland. Ecological Processes 8, 47
Low-level retention forestry, certification and biodiversity: case Finland.Crossref | GoogleScholarGoogle Scholar |

Lehtonen H, Kolström T (2000) Forest fire history in Viena Karelia, Russia. Scandinavian Journal of Forest Research 15, 585–590.
Forest fire history in Viena Karelia, Russia.Crossref | GoogleScholarGoogle Scholar |

Lehtonen I, Ruosteenoja K, Venäläinen A, Gregow H (2014) The projected 21st century forest fire risk in Finland under different greenhouse gas scenarios. Boreal Environment Research 19, 127–139. https://www.researchgate.net/publication/285955800_The_projected_21st_century_forest-fire_risk_in_Finland_under_different_greenhouse_gas_scenarios

Lehtonen I, Venäläinen A, Kämäräinen M, Peltola H, Gregow H (2016) Risk of large-scale fires in boreal forests of Finland under changing climate. Natural Hazards and Earth System Sciences 16, 239–253.
Risk of large-scale fires in boreal forests of Finland under changing climate.Crossref | GoogleScholarGoogle Scholar |

Lemberg T, Puttonen P (2002) ‘Kulottajan käsikirja.’ Metsälehti kustannus. Vammalan kirjapaino. [Guide for prescribed burning] [In Finnish]

Lindberg H, Punttila P, Vanha-Majamaa I (2020) The challenge of combining variable retention and prescribed burning in Finland. Ecological Processes 9, 4
The challenge of combining variable retention and prescribed burning in Finland.Crossref | GoogleScholarGoogle Scholar |

Mäkelä HM, Laapas M, Venäläinen A (2012) Long-term temporal changes in the occurrence of a high forest fire danger in Finland. Natural Hazards and Earth System Sciences 12, 2591–2601.
Long-term temporal changes in the occurrence of a high forest fire danger in Finland.Crossref | GoogleScholarGoogle Scholar |

Mäkelä HM, Venäläinen A, Jylhä K, Lehtonen I, Gregow H (2014) Probabilistic projections of climatological forest fire danger in Finland. Climate Research 60, 73–85.
Probabilistic projections of climatological forest fire danger in Finland.Crossref | GoogleScholarGoogle Scholar |

Mäkipää R (2000a) Pleurozium schreberi. In ‘Kasvit muuttuvassa metsäluonnossa’. (Eds Reinikainen A, Mäkipää R, Vanha-Majamaa I, Hotanen J-P.) [Summary in English: Changes in the frequency and abundance of forest and mire plants in Finland since 1950] pp. 251–253. (Tammi: Jyväskylä)

Mäkipää R (2000b) Dicranum. In ‘Kasvit muuttuvassa metsäluonnossa’. (Eds Reinikainen A, Mäkipää R, Vanha-Majamaa I, Hotanen J-P.) [Summary in English: Changes in the frequency and abundance of forest and mire plants in Finland since 1950] pp. 241–242. (Tammi: Jyväskylä)

Mäkipää R (2000c) Hylocomium splendensi. In ‘Kasvit muuttuvassa metsäluonnossa’. (Eds Reinikainen A, Mäkipää R, Vanha-Majamaa I, Hotanen J-P.) [Summary in English: Changes in the frequency and abundance of forest and mire plants in Finland since 1950] pp. 248–250. (Tammi: Jyväskylä)

Mäkipää R, Heikkinen J (2003) Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. Journal of Vegetation Science 14, 497–508.
Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland.Crossref | GoogleScholarGoogle Scholar |

Mutch RW, Gastineau OW (1970) Timelag and equilibrium moisture content of reindeer lichen. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-76. (Ogden, UT)

Nousiainen H (2000) Cladina. In ‘Kasvit muuttuvassa metsäluonnossa’. (Eds Reinikainen A, Mäkipää R, Vanha-Majamaa I, Hotanen J-P.) [Summary in English: Changes in the frequency and abundance of forest and mire plants in Finland since 1950] pp. 288–290. (Tammi: Jyväskylä)

Okko M (1972) Jäätikön häviämistapa Toisen Salpausselän vyöhykkeessä Lammilla. [Summary: Deglaciation in the Second Salpausselka ice-marginal belt at Lammi, South Finland]. Terra 84, 115–123.

Päätalo ML (1998) Factors influencing occurrence and impacts of fires in northern European forests. Silva Fennica 32, 185–202.
Factors influencing occurrence and impacts of fires in northern European forests.Crossref | GoogleScholarGoogle Scholar |

Péch G (1989) A model to predict the moisture content of reindeer lichen. Forest Science 35, 1014–1028.

Péch G (1991) Dew on reindeer lichen. Canadian Journal of Forest Research 21, 1415–1418.
Dew on reindeer lichen.Crossref | GoogleScholarGoogle Scholar |

Peterson W, Mayo J (1975) Moisture stress and its effect on photosynthesis in Dicranum polysetum. Canadian Journal of Botany 53, 2897–2900.
Moisture stress and its effect on photosynthesis in Dicranum polysetum.Crossref | GoogleScholarGoogle Scholar |

Pya N (2018) scam: Shape constrained additive models. R package version 1.2–3. Available at https://CRAN.R-project.org/package=scam

R Core Team (2019) R: A language and environment for statistical computing. Version 3.5. (R Foundation for Statistical Computing: Vienna, Austria)

Rantala S (ed) (2011) ‘Finnish forestry – practice and management.’ (Metsäkustannus: Helsinki)

San-Miguel-Ayanz J, Carlson JD, Alexander M, Tolhurst K, Morgan G, Sneeuwjagt R, Dudley M (2003) Current methods to assess fire danger potential. In ‘Wildland fire danger estimation and mapping. The role of remote sensing data’. (Ed. E Chuvieco) pp. 21–61. (World Scientific Publishing: Singapore)

Sandberg DV (1980) Duff reduction by prescribed burning in Douglas-fir. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Research Paper PNW-272. (Portland, OR)10.2737/PNW-RP-272

Schimmel J, Granström A (1997) Fuel succession and fire behavior in the Swedish boreal forest. Canadian Journal of Forest Research 27, 1207–1216.
Fuel succession and fire behavior in the Swedish boreal forest.Crossref | GoogleScholarGoogle Scholar |

Sjöström J, Plathner FV, Granström A (2019) Wildfire ignition from forestry machines in boreal Sweden. International Journal of Wildland Fire 28, 666–677.
Wildfire ignition from forestry machines in boreal Sweden.Crossref | GoogleScholarGoogle Scholar |

Tamminen P (1991) Kangasmaan ravinnetunnusten ilmaiseminen ja viljavuuden alueellinen vaihtelu. [Summary: Expression of soil nutrient status and regional variation in soil fertility of forested sites in southern Finland]. Folia Forestalia 777. (Finnish Forest Research Institute). Available at http://urn.fi/URN:ISBN:951-40-1170-8

Tanskanen H, Venäläinen A, Puttonen P, Granström A (2005) Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Canadian Journal of Forest Research 35, 410–420.
Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland.Crossref | GoogleScholarGoogle Scholar |

Tanskanen H, Granström A, Venäläinen A, Puttonen P (2006) Moisture dynamics of moss-dominated surface fuel in relation to the structure of Picea abies and Pinus sylvestris stands. Forest Ecology and Management 226, 189–198.
Moisture dynamics of moss-dominated surface fuel in relation to the structure of Picea abies and Pinus sylvestris stands.Crossref | GoogleScholarGoogle Scholar |

Tonteri T, Salemaa M, Rautio P (2013) Changes of understorey vegetation in Finland in 1985–2006. In ‘Forest condition monitoring in Finland – National report’. (Eds Merilä, P & Jortikka, S) pp. 1–8 (The Finnish Forest Research Institute) [Online report]. Available at http://urn.fi/URN:NBN:fi:metla-201305087583

Vajda A, Venäläinen A, Suomi I, Junila P, Mäkelä HM (2014) Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in Finland. Meteorological Applications 21, 879–887.
Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in Finland.Crossref | GoogleScholarGoogle Scholar |

Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Forestry Technical Report 35, Vol. 1. (Ottawa, ON, Canada) Available at https://cfs.nrcan.gc.ca/publications?id=19927 [Verified 28 November 2020].

Van Wagner CE, Pickett TL (1985) Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Petawawa National Forestry Institute, Forestry Technical Report 33. (Chalk River, ON) Available at https://cfs.nrcan.gc.ca/publications?id=19973 [Verified 28 November 2020].

Vasander H, Lindholm T (1985) Fire intensities and surface temperatures during prescribed burning. Silva Fennica 19, 1–15.
Fire intensities and surface temperatures during prescribed burning.Crossref | GoogleScholarGoogle Scholar |

Venäläinen A, Heikinheimo M (2003) The Finnish forest fire index calculation system. In ‘Early warning systems for natural disaster reduction’. (Eds Zschau, J. & Kuppers, A.) pp. 645–647 (Springer: Berlin)

Wallenius T (2004) Fire histories and tree ages in unmanaged boreal forests in eastern Fennoscandia and Onega peninsula. PhD dissertation, June 2004. University of Helsinki, Finland. Available at http://urn.fi/URN:ISBN:952-10-1893-3

Wallenius T (2011) Major decline in fires in coniferous forests – reconstructing the phenomenon and seeking for the cause. Silva Fennica 45, 139–155.
Major decline in fires in coniferous forests – reconstructing the phenomenon and seeking for the cause.Crossref | GoogleScholarGoogle Scholar |

Ziel RH, Bieniek PA, Bhatt US, Strader H, Rupp TS, York AA (2020) Comparison of Fire Weather Indices with MODIS fire days for the natural regions of Alaska. Forests 11, 516
Comparison of Fire Weather Indices with MODIS fire days for the natural regions of Alaska.Crossref | GoogleScholarGoogle Scholar |

Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) ‘Mixed effects models and extensions in ecology with R.’ (Springer: New York, NY)