Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
CORRIGENDUM

Corrigendum to: The effect of woody fuel characteristics on fuel ignition and consumption: a case study from a eucalypt forest in south-west Western Australia

J. J. Hollis, W. L. McCaw and M. G. Cruz

International Journal of Wildland Fire 28(8) 640 - 640
Published: 22 August 2019

Abstract

Coarse woody debris (>0.6cm in diameter) is an important component of the fuel complex in Australian eucalypt forests, influencing both fire behaviour, smoke production and post-fire ecological processes. We investigated how physical characteristics of woody fuel affected ignition and consumption during an experimental fire where the fuel complex characteristics, fire weather and fire behaviour varied within a narrow range. Decay status, bark condition, arrangement, suspension and extent of charring were classified for 2866 coarse woody fuel particles. We used generalised linear model (GLM) analysis to explain ignition success and the extent of consumption of individual particles, with a focus on larger diameter fuels (>7.5cm in diameter), which comprised 83% of the woody fuel load and 94% of the woody fuel consumed during the flaming and smouldering stages of combustion. Ignition success was best explained by a model that included fuel arrangement (a surrogate of fuel proximity), suspension and decay status. The extent of fuel consumption was greater for pieces in advanced stages of decay, but suspension (inversely related) and arrangement (directly related) also affected the outcome. Forest management practices, previous fire history and other natural disturbances are likely to influence the distribution of pre-fire diameters and suspension classes that characterise large woody fuels at a site, and will therefore influence woody fuel consumption. This has practical implications for quantifying heat release and atmospheric emissions from fires burning in forests with different management histories.

https://doi.org/10.1071/WF17174_CO

© IAWF 2019

Committee on Publication Ethics


Export Citation Get Permission