Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

Remote sensing applications for prescribed burn research

Anna LoPresti https://orcid.org/0000-0003-4801-1529 A * , Meghan T. Hayden https://orcid.org/0000-0003-2929-1078 A , Katherine Siegel https://orcid.org/0000-0001-6294-2130 A B , Benjamin Poulter https://orcid.org/0000-0002-9493-8600 C , E. Natasha Stavros https://orcid.org/0000-0001-6657-7310 D and Laura E. Dee https://orcid.org/0000-0003-0471-1371 A
+ Author Affiliations
- Author Affiliations

A Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA.

B Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO 80309, USA.

C NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USA.

D WKID Solutions LLC, 4001 Discovery Drive, Boulder, CO 80303, USA.

* Correspondence to: Anna.Lopresti@colorado.edu

International Journal of Wildland Fire 33, WF23130 https://doi.org/10.1071/WF23130
Submitted: 17 August 2023  Accepted: 3 May 2024  Published: 24 May 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Prescribed burning is a key management strategy within fire-adapted systems, and improved monitoring approaches are needed to evaluate its effectiveness in achieving social-ecological outcomes. Remote sensing provides opportunities to analyse the impacts of prescribed burning, yet a comprehensive understanding of the applications of remote sensing for prescribed burn research is lacking. We conduct a literature review of 120 peer-reviewed publications to synthesise the research aims, methodologies, limitations and future directions of remote sensing for the analysis of prescribed fire. Studies evaluating management outcomes found prescribed burning effective for wildfire risk reduction, yet few analysed co-benefits or trade-offs with other management goals. Most studies use passive, spaceborne, low spatial resolution sensors, characterised in the literature as consistent and accessible data sources but limited in detecting small, low-severity and short-duration fires characteristic of prescribed burns. In contrast, active remote sensing approaches including LiDAR are less frequently employed, but show promise for highly accurate, spatially explicit 3D vegetation and fuel load mapping. Remote sensing advances toward higher spatial resolution, more frequent revisit, denser spectral sampling and more data across the electromagnetic spectrum are critical to advancing prescribed fire research, addressing current methodological gaps, and improving fuels and fire management capacity.

Keywords: burnt area mapping, controlled burning, Earth observation, fire detection, fire ecology, fuels reduction, LiDAR, prescribed fire, satellite imagery, wildfire management.

References

Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113(42), 11770-11775.
| Crossref | Google Scholar | PubMed |

Adlam C, Almendariz D, Goode RW, Martinez DJ, Middleton BR (2022) Keepers of the flame: supporting the revitalization of Indigenous cultural burning. Society & Natural Resources 35(5), 575-590.
| Crossref | Google Scholar |

Allen KA, Denelle P, Ruiz FMS, Santana VM, Marrs RH (2016) Prescribed moorland burning meets good practice guidelines: a monitoring case study using aerial photography in the Peak District, UK. Ecological Indicators 62, 76-85.
| Crossref | Google Scholar |

Ansley RJ, Pinchak WE, Teague WR, Kramp BA, Jones DL, Barnett K (2010) Integrated grazing and prescribed fire restoration strategies in a mesquite savanna: II. Fire behavior and mesquite landscape cover responses. Rangeland Ecology and Management 63(3), 286-297.
| Crossref | Google Scholar |

Arkle RS, Pilliod DS, Welty JL (2012) Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests. Forest Ecology and Management 276, 174-184.
| Crossref | Google Scholar |

Arreola Amaya M, Clements CB (2020) Evolution of plume core structures and turbulence during a wildland fire experiment. Atmosphere 11(8), 842.
| Crossref | Google Scholar |

Aydell TB, Clements CB (2021) Mobile Ka-Band polarimetric Doppler radar observations of wildfire smoke plumes. Monthly Weather Review 149(5), 1247-1264.
| Crossref | Google Scholar |

Baijnath-Rodino JA, Li S, Martinez A, Kumar M, Quinn-Davidson LN, York RA, Banerjee T (2022) Historical seasonal changes in prescribed burn windows in California. Science of The Total Environment 836, 155723.
| Crossref | Google Scholar | PubMed |

Barnes WL, Xiong X, Salomonson VV (2003) Status of Terra MODIS and Aqua MODIS. Advances in Space Research 32(11), 2099-2106.
| Crossref | Google Scholar |

Boer MM, Sadler RJ, Wittkuhn RS, McCaw L, Grierson PF (2009) Long-term impacts of prescribed burning on regional extent and incidence of wildfires – Evidence from 50 years of active fire management in SW Australian forests. Forest Ecology and Management 259(1), 132-142.
| Crossref | Google Scholar |

Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, Van Der Werf GR, Pyne SJ (2009) Fire in the Earth System. Science 324(5926), 481-484.
| Crossref | Google Scholar | PubMed |

Bucini G, Lambin EF (2002) Fire impacts on vegetation in central Africa: a remote-sensing-based statistical analysis. Applied Geography 22(1), 27-48.
| Crossref | Google Scholar |

Cansler CA, Kane VR, Hessburg PF, Kane JT, Jeronimo SMA, Lutz JA, Povak NA, Churchill DJ, Larson AJ (2022) Previous wildfires and management treatments moderate subsequent fire severity. Forest Ecology and Management 504, 119764.
| Crossref | Google Scholar |

Cary GJ, Davies ID, Bradstock RA, Keane RE, Flannigan MD (2017) Importance of fuel treatment for limiting moderate-to-high intensity fire: findings from comparative fire modelling. Landscape Ecology 32(7), 1473-1483.
| Crossref | Google Scholar |

Cawse-Nicholson K, Townsend PA, Schimel D, Assiri AM, Blake PL, Buongiorno MF, Campbell P, Carmon N, Casey KA, Correa-Pabón RE, Dahlin KM, Dashti H, Dennison PE, Dierssen H, Erickson A, Fisher JB, Frouin R, Gatebe CK, Gholizadeh H, Gierach M, Glenn NF, Goodman JA, Griffith DM, Guild L, Hakkenberg CR, Hockberg EJ, Holmes TRH, Hu C, Hulley G, Huemmrich KF, Kudela RM, Kokaly RF, Lee CM, Martin R, Miller CE, Moses WJ, Muller-Karger FE, Ortiz JD, Otis DB, Pahlevan N, Painter TH, Pavlick R, Poulter B, Qi Y, Realmuto VJ, Roberts D, Schaepman ME, Schneider FD, Schwandner FM, Serbin SP, Shiklomanov AN, Stavros EN, Thompson DR, Torres-Perez JL, Turpie KR, Tzortziou M, Ustin S, Yu Q, Yusup Y, Zhang Q, , the SBG Algorithms Working Group (2021) NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms. Remote Sensing of Environment 257, 112349.
| Crossref | Google Scholar |

Chapman JW, Thompson DR, Helmlinger MC, Bue BD, Green RO, Eastwood ML, Geier S, Olson-Duvall W, Lundeen SR (2019) Spectral and radiometric calibration of the next generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). Remote Sensing 11(18), 2129.
| Crossref | Google Scholar |

Charland AM, Clements CB (2013) Kinematic structure of a wildland fire plume observed by Doppler lidar. Journal of Geophysical Research: Atmospheres 118(8), 3200-3212.
| Crossref | Google Scholar |

Clark KL, Skowronski N, Hom J, Duveneck M, Pan Y, Tuyl SV, Cole J, Patterson M, Maurer S (2009) Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens. International Journal of Wildland Fire 18(3), 268-277.
| Crossref | Google Scholar |

Coop JD, Parks SA, Stevens-Rumann CS, Crausbay SD, Higuera PE, Hurteau MD, Tepley A, Whitman E, Assal T, Collins BM, Davis KT, Dobrowski S, Falk DA, Fornwalt PJ, Fulé PZ, Harvey BJ, Kane VR, Littlefield CE, Margolis EQ, North M, Parisien MA, Prichard S, Rodman KC (2020) Wildfire-driven forest conversion in western North American landscapes. BioScience 70(8), 659-673.
| Crossref | Google Scholar | PubMed |

Davis GK (2007) History of the NOAA satellite program. Journal of Applied Remote Sensing 1(1), 012504.
| Crossref | Google Scholar |

Davis KT, Higuera PE, Dobrowski SZ, Parks SA, Abatzoglou JT, Rother MT, Veblen TT (2020) Fire-catalyzed vegetation shifts in ponderosa pine and Douglas-fir forests of the western United States. Environmental Research Letters 15(10), 1040b8.
| Crossref | Google Scholar |

Dickinson MB, Hudak AT, Zajkowski T, Loudermilk EL, Schroeder W, Ellison L, Kremens RL, Holley W, Martinez O, Paxton A, Bright BC, O’Brien JJ, Hornsby B, Ichoku C, Faulring J, Gerace A, Peterson D, Mauceri J (2015) Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors – RxCADRE 2012. International Journal of Wildland Fire 25(1), 48-61.
| Crossref | Google Scholar |

Eidenshink J, Schwind B, Brewer K, Zhu Z-L, Quayle B, Howard S (2007) A project for monitoring trends in burn severity. Fire Ecology 3(1), 3-21.
| Crossref | Google Scholar |

Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6(8), 439-447.
| Crossref | Google Scholar |

Fernandes PM (2015) Empirical support for the use of prescribed burning as a fuel treatment. Current Forestry Reports 1(2), 118-127.
| Crossref | Google Scholar |

Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire 12(2), 117-128.
| Crossref | Google Scholar |

Fernández-Guisuraga JM, Suárez-Seoane S, Fernandes PM, Fernández-García V, Fernández-Manso A, Quintano C, Calvo L (2022) Pre-fire aboveground biomass, estimated from LiDAR, spectral and field inventory data, as a major driver of burn severity in maritime pine (Pinus pinaster) ecosystems. Forest Ecosystems 9, 100022.
| Crossref | Google Scholar |

Fisher JB, Lee B, Purdy AJ, Halverson GH, Dohlen MB, Cawse-Nicholson K, Wang A, Anderson RG, Aragon B, Arain MA, Baldocchi DD, Baker JM, Barral H, Bernacchi CJ, Bernhofer C, Biraud SC, Bohrer G, Brunsell N, Cappelaere B, Castro-Contreras S, Chun J, Conrad BJ, Cremonese E, Demarty J, Desai AR, De Ligne A, Foltýnová L, Goulden ML, Griffis TJ, Grünwald T, Johnson MS, Kang M, Kelbe D, Kowalska N, Lim J-H, Maïnassara I, McCabe MF, Missik JEC, Mohanty BP, Moore CE, Morillas L, Morrison R, Munger JW, Posse G, Richardson AD, Russell ES, Ryu Y, Sanchez-Azofeifa A, Schmidt M, Schwartz E, Sharp I, Šigut L, Tang Y, Hulley G, Anderson M, Hain C, French A, Wood E, Hook S (2020) ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resources Research 56, e2019WR026058.
| Crossref | Google Scholar |

Franke J, Barradas ACS, Borges MA, Menezes Costa M, Dias PA, Hoffmann AA, Orozco Filho JC, Melchiori AE, Siegert F (2018) Fuel load mapping in the Brazilian Cerrado in support of integrated fire management. Remote Sensing of Environment 217, 221-232.
| Crossref | Google Scholar |

Goodrich DC, Wei H, Burns IS, Guertin DP, Spaeth K, Hernandez M, Holifield-Collins C, Kautz M, Heilman P, Levick LR, Ponce G, Carrillo E, Tiller R (2020) Evaluation of conservation effects assessment project grazing lands conservation practices on the Cienega Creek watershed in southeast Arizona with AGWA/RHEM modeling tools. Journal of Soil and Water Conservation 75(3), 304-318.
| Crossref | Google Scholar |

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18-27.
| Crossref | Google Scholar |

Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O (1998) Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment 65(3), 227-248.
| Crossref | Google Scholar |

Green RO, Mahowald N, Ung C, Thompson DR, Bator L, Bennet M, Bernas M, Blackway N, Bradley C, Cha J, Clark P, Clark R, Cloud D, Diaz E, Ben Dor E, Duren R, Eastwood M, Ehlmann BL, Fuentes L, Ginoux P, Gross J, He Y, Kalashnikova O, Kert W, Keymeulen D, Klimesh M, Ku D, Kwong-Fu H, Liggett E, Li L, Lundeen S, Makowski MD, Mazer A, Miller R, Mouroulis P, Oaida B, Okin GS, Ortega A, Oyake A, Nguyen H, Pace T, Painter TH, Pempejian J, Garcia-Pando CP, Pham T, Phillips B, Pollock R, Purcell R, Realmuto V, Schoolcraft J, Sen A, Shin S, Shaw L, Soriano M, Swayze G, Thingvold E, Vaid A, Zan J (2020) The Earth Surface Mineral Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission. In ‘2020 IEEE Aerospace Conference’. Presented at the 2020 IEEE Aerospace Conference. pp. 1–15. (Institute of Electrical and Electronics Engineers)

Gupta V, Reinke KJ, Jones SD, Wallace L, Holden L (2015) Assessing metrics for estimating fire-induced change in the forest understorey structure using terrestrial laser scanning. Remote Sensing 7(6), 8180-8201.
| Crossref | Google Scholar |

Hiers JK, O’Brien JJ, Varner JM, Butler BW, Dickinson M, Furman J, Gallagher M, Godwin D, Goodrick SL, Hood SM, Hudak A, Kobziar LN, Linn R, Loudermilk EL, McCaffrey S, Robertson K, Rowell EM, Skowronski N, Watts AC, Yedinak KM (2020) Prescribed fire science: the case for a refined research agenda. Fire Ecology 16(1), 11.
| Crossref | Google Scholar |

Hook SJ, Myers JJ, Thome KJ, Fitzgerald M, Kahle AB (2001) The MODIS/ASTER airborne simulator (MASTER) – A new instrument for earth science studies. Remote Sensing of Environment 76(1), 93-102.
| Crossref | Google Scholar |

Horning N (2008) Remote sensing. In ‘Encyclopedia of Ecology’. (Eds SE Jørgensen, BD Fath) pp. 2986–2994. (Academic Press)

Huang R, Zhang X, Chan D, Kondragunta S, Russell AG, Odman MT (2018) Burned area Ccmparisons between prescribed burning permits in southeastern United States and two satellite-derived products. Journal of Geophysical Research: Atmospheres 123(9), 4746-4757.
| Crossref | Google Scholar |

Hudak AT, Kato A, Bright BC, Loudermilk EL, Hawley C, Restaino JC, Ottmar RD, Prata GA, Cabo C, Prichard SJ, Rowell EM, Weise DR (2020) Towards spatially explicit quantification of pre- and post-fire fuels and fuel consumption from traditional and point cloud measurements. Forest Science 66(4), 428-442.
| Crossref | Google Scholar |

Hunter ME, Robles MD (2020) Tamm review: the effects of prescribed fire on wildfire regimes and impacts: a framework for comparison. Forest Ecology and Management 475, 118435.
| Crossref | Google Scholar |

Johnson WR, Hook SJ, Mouroulis P, Wilson DW, Gunapala SD, Realmuto V, Lamborn A, Paine C, Mumolo M, Eng BT (2011) HyTES: thermal imaging spectrometer development. In ‘2011 Aerospace Conference’. pp. 1–8. (Institute of Electrical and Electronics Engineers)

Johnston FH, Borchers-Arriagada N, Morgan GG, Jalaludin B, Palmer AJ, Williamson GJ, Bowman DMJS (2021) Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nature Sustainability 4(1), 42-47.
| Crossref | Google Scholar |

Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications 6(1), 7537.
| Crossref | Google Scholar | PubMed |

Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. BioScience 56(7), 598-606.
| Crossref | Google Scholar |

Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18(1), 116-126.
| Crossref | Google Scholar |

Kennedy MC, Ford ED, Singleton P, Finney M, Agee JK (2008) Informed multi-objective decision-making in environmental management using Pareto optimality. Journal of Applied Ecology 45(1), 181-192.
| Crossref | Google Scholar |

Kibler CL, Parkinson A-ML, Peterson SH, Roberts DA, D’Antonio CM, Meerdink SK, Sweeney SH (2019) Monitoring post-fire recovery of chaparral and conifer species using field surveys and Landsat time series. Remote Sensing 11(24), 2963.
| Crossref | Google Scholar |

Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X, Skowronski NS, Hom JL, Clark KL, Patterson M, Gallagher MR (2014) Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY. Journal of Applied Meteorology and Climatology 53(4), 793-812.
| Crossref | Google Scholar |

Knapp E, Estes B, Skinner C (2009) Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers. Gen. Tech. Rep. PSW-GTR-224. 80 p. (U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA)

Kochi I, Donovan GH, Champ PA, Loomis JB, Kochi I, Donovan GH, Champ PA, Loomis JB (2010) The economic cost of adverse health effects from wildfire-smoke exposure: a review. International Journal of Wildland Fire 19(7), 803-817.
| Crossref | Google Scholar |

Kolden CA (2019) We’re not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2(2), 30.
| Crossref | Google Scholar |

Kyngäs H (2020) Inductive content analysis. In ‘The Application of Content Analysis in Nursing Science Research’. (Eds. H Kyngäs, K Mikkonen, M Kääriäinen) pp. 13–21. (Springer International Publishing)

Lake FK, Wright V, Morgan P, McFadzen M, McWethy  D, Stevens-Rumann C (2017) Returning fire to the land: celebrating traditional knowledge and fire. Journal of Forestry 115(5), 343-353 Pmmcwethydstevens-rumannc.
| Crossref | Google Scholar |

Leblon B, San-Miguel-Ayanz J, Bourgeau-Chavez L, Kong M (2016) 3-Remote sensing of wildfires. In ‘Land Surface Remote Sensing’. (Eds N Baghdadi M Zribi) pp. 55–95. (Elsevier)

Leite RV, Silva CA, Broadbent EN, do Amaral CH, Liesenberg V, de Almeida DRA, Mohan M, Godinho S, Cardil A, Hamamura C, de Faria BL, Brancalion PHS, Hirsch A, Marcatti GE, Dalla Corte AP, Zambrano AMA, da Costa MBT, Matricardi EAT, da Silva AL, Goya LRRY, Valbuena R, de Mendonça BAF, Silva Junior CHL, Aragão LEOC, García M, Liang J, Merrick T, Hudak AT, Xiao J, Hancock S, Duncason L, Ferreira MP, Valle D, Saatchi S, Klauberg C (2022) Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment 268, 112764.
| Crossref | Google Scholar |

Li F, Zhang X, Kondragunta S, Schmidt CC, Holmes CD (2020) A preliminary evaluation of GOES-16 active fire product using Landsat-8 and VIIRS active fire data, and ground-based prescribed fire records. Remote Sensing of Environment 237, 111600.
| Crossref | Google Scholar |

Li X, Song W, Lian L, Wei X (2015) Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sensing 7(4), 4473-4498.
| Crossref | Google Scholar |

Liu T, Mickley LJ, McCarty JL (2021) Global search for temporal shifts in fire activity: potential human influence on southwest Russia and north Australia fire seasons. Environmental Research Letters 16(4), 044023.
| Crossref | Google Scholar |

Loudermilk EL, Achtemeier GL, O’Brien JJ, Hiers JK, Hornsby BS (2014) High-resolution observations of combustion in heterogeneous surface fuels. International Journal of Wildland Fire 23(7), 1016-1026.
| Crossref | Google Scholar |

Marks-Block T, Tripp W (2021) Facilitating prescribed fire in northern California through Indigenous governance and interagency partnerships. Fire 4(3), 47.
| Crossref | Google Scholar |

McCarley TR, Kolden CA, Vaillant NM, Hudak AT, Smith AMS, Wing BM, Kellogg BS, Kreitler J (2017) Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sensing of Environment 191, 419-432.
| Crossref | Google Scholar |

McCarthy N, McGowan H, Guyot A, Dowdy A (2018) Mobile X-Pol Radar: a new tool for investigating pyroconvection and associated wildfire meteorology. Bulletin of the American Meteorological Society 99(6), 1177-1195.
| Crossref | Google Scholar |

McWethy DB, Schoennagel T, Higuera PE, Krawchuk M, Harvey BJ, Metcalf EC, Schultz C, Miller C, Metcalf AL, Buma B, Virapongse A, Kulig JC, Stedman RC, Ratajczak Z, Nelson CR, Kolden C (2019) Rethinking resilience to wildfire. Nature Sustainability 2(9), 797-804.
| Crossref | Google Scholar |

Meddens AJH, Kolden CA, Lutz JA, Smith AMS, Cansler CA, Abatzoglou JT, Meigs GW, Downing WM, Krawchuk MA (2018) Fire refugia: what are they, and why do they matter for global change? BioScience 68(12), 944-954.
| Crossref | Google Scholar |

Miao Z, Lathrop RG, Xu M, La Puma IP, Clark KL, Hom J, Skowronski N, Van Tuyl S (2011) Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands. Environmental Modelling & Software 26(9), 1112-1122.
| Crossref | Google Scholar |

Mietkiewicz N, Balch JK, Schoennagel T, Leyk S, St Denis LA, Bradley BA (2020) In the line of fire: consequences of human-ignited wildfires to homes in the US (1992–2015). Fire 3(3), 50.
| Crossref | Google Scholar |

Mikolajewicz N, Komarova SV (2019) Meta-analytic methodology for basic research: a practical guide. Frontiers in Physiology 10, 203.
| Crossref | Google Scholar | PubMed |

Molina JR, Ortega M, Rodríguez y Silva F (2022) Fire ignition patterns to manage prescribed fire behavior: application to Mediterranean pine forests. Journal of Environmental Management 302, 114052.
| Crossref | Google Scholar | PubMed |

Murphy RE, Ardanuy P, Deluccia FJ, Clement JE, Schueler CF (2006) The visible infrared imaging radiometer suite. In ‘Earth Science Satellite Remote Sensing. Vol. 1: Science and Instruments’. (Eds JJ Qu, W Gao, M Kafatos, RE Murphy, VV Salomonson) pp. 199–223. (Springer)

National Research Council (2013) ‘Landsat and Beyond: Sustaining and Enhancing the Nation’s Land Imaging Program.’ (National Academies Press)

Navulur K (2006) ‘Multispectral Image Analysis Using the Object-Oriented Paradigm.’ (CRC Press)

Nguyen TH, Jones SD, Soto-Berelov M, Haywood A, Hislop S (2018) A spatial and temporal analysis of forest dynamics using Landsat time-series. Remote Sensing of Environment 217, 461-475.
| Crossref | Google Scholar |

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux F, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11), 933-938.
| Crossref | Google Scholar |

Parks SA, Dillon GK, Miller C (2014) A new metric for quantifying burn severity: the relativized burn ratio. Remote Sensing 6(3), 1827-1844.
| Crossref | Google Scholar |

Parks SA, Holsinger LM, Voss MA, Loehman RA, Robinson NP (2018) Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potential. Remote Sensing 10, 879.
| Crossref | Google Scholar |

Pausas JG, Keeley JE (2021) Wildfires and global change. Frontiers in Ecology and the Environment 19(7), 387-395.
| Crossref | Google Scholar |

Petrakis RE, Villarreal ML, Wu Z, Hetzler R, Middleton BR, Norman LM (2018) Evaluating and monitoring forest fuel treatments using remote sensing applications in Arizona, USA. Forest Ecology and Management 413, 48-61.
| Crossref | Google Scholar |

Pouliot GA, Pace TG, Biswadev R, Pierce T, Mobley D (2008) Development of a biomass burning emissions inventory by combining satellite and ground-based information. Journal of Applied Remote Sensing 2(1), 021501.
| Crossref | Google Scholar |

Price OF, Russell-Smith J, Watt F (2012) The influence of prescribed fire on the extent of wildfire in savanna landscapes of western Arnhem Land, Australia. International Journal of Wildland Fire 21, 297-305.
| Crossref | Google Scholar |

Prichard SJ, Peterson DL, Jacobson K (2010) Fuel treatments reduce the severity of wildfire effects in dry mixed conifer forest, Washington, USA. Canadian Journal of Forest Research 40(8), 1615-1626.
| Crossref | Google Scholar |

Qi Y, Dennison PE, Spencer J, Riaño D (2012) Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecology 8(3), 71-87.
| Crossref | Google Scholar |

Radford IJ, Woolley L-A, Corey B, Vigilante T, Hatherley E, Fairman R, Carnes K, Start AN, Wunambal Gaambera Aboriginal Corporation (2020) Prescribed burning benefits threatened mammals in northern Australia. Biodiversity and Conservation 29(9), 2985-3007.
| Crossref | Google Scholar |

Rauste Y, Herland E, Frelander H, Soini K, Kuoremaki T, Ruokari A (1997) Satellite-based forest fire detection for fire control in boreal forests. International Journal of Remote Sensing 18(12), 2641-2656.
| Crossref | Google Scholar |

Rowell EM, Seielstad CA, Ottmar RD, Rowell EM, Seielstad CA, Ottmar RD (2015) Development and validation of fuel height models for terrestrial lidar – RxCADRE 2012. International Journal of Wildland Fire 25(1), 38-47.
| Crossref | Google Scholar |

Ryan KC, Knapp EE, Varner JM (2013) Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Frontiers in Ecology and the Environment 11(s1), e15-e24.
| Crossref | Google Scholar |

Saatchi S, Halligan K, Despain DG, Crabtree RL (2007) Estimation of forest fuel load from radar remote sensing. IEEE Transactions on Geoscience and Remote Sensing 45(6), 1726-1740.
| Crossref | Google Scholar |

Sankey JB, Sankey TT, Li J, Ravi S, Wang G, Caster J, Kasprak A (2021) Quantifying plant–soil–nutrient dynamics in rangelands: fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sensing of Environment 253, 112223.
| Crossref | Google Scholar |

Schultz CA, McCaffrey SM, Huber-Stearns HR (2019) Policy barriers and opportunities for prescribed fire application in the western United States. International Journal of Wildland Fire 28(11), 874.
| Crossref | Google Scholar |

Schweizer D, Preisler HK, Cisneros R (2019) Assessing relative differences in smoke exposure from prescribed, managed, and full suppression wildland fire. Air Quality, Atmosphere & Health 12(1), 87-95.
| Crossref | Google Scholar |

Showstack R (2014) Sentinel satellites initiate new era in Earth observation. Eos, Transactions American Geophysical Union 95(26), 239-240.
| Crossref | Google Scholar |

Shrestha M, Broadbent EN, Vogel JG (2021) Using GatorEye UAV-Borne LiDAR to quantify the spatial and temporal effects of a prescribed fire on understory height and biomass in a pine savanna. Forests 12(1), 38.
| Crossref | Google Scholar |

Shuman JK, Balch JK, Barnes RT, Higuera PE, Roos CI, Schwilk DW, Stavros EN, Banerjee T, Bela MM, Bendix J, Bertolino S, Bililign S, Bladon KD, Brando P, Breidenthal RE, Buma B, Calhoun D, Carvalho LMV, Cattau ME, Cawley KM, Chandra S, Chipman ML, Cobian-Iñiguez J, Conlisk E, Coop JD, Cullen A, Davis KT, Dayalu A, De Sales F, Dolman M, Ellsworth LM, Franklin S, Guiterman CH, Hamilton M, Hanan EJ, Hansen WD, Hantson S, Harvey BJ, Holz A, Huang T, Hurteau MD, Ilangakoon NT, Jennings M, Jones C, Klimaszewski-Patterson A, Kobziar LN, Kominoski J, Kosovic B, Krawchuk MA, Laris P, Leonard J, Loria-Salazar SM, Lucash M, Mahmoud H, Margolis E, Maxwell T, McCarty JL, McWethy DB, Meyer RS, Miesel JR, Moser WK, Nagy RC, Niyogi D, Palmer HM, Pellegrini A, Poulter B, Robertson K, Rocha AV, Sadegh M, Santos F, Scordo F, Sexton JO, Sharma AS, Smith AMS, Soja AJ, Still C, Swetnam T, Syphard AD, Tingley MW, Tohidi A, Trugman AT, Turetsky M, Varner JM, Wang Y, Whitman T, Yelenik S, Zhang X (2022) Reimagine fire science for the Anthropocene. PNAS Nexus 1(3), 115.
| Crossref | Google Scholar | PubMed |

Skowronski N, Clark K, Nelson R, Hom J, Patterson M (2007) Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sensing of Environment 108(2), 123-129.
| Crossref | Google Scholar |

Soja AJ, Al-Saadi JA, Giglio L, Randall D, Kittaka C, Pouliot GA, Kordzi JJ, Raffuse SM, Pace TG, Pierce T, Moore T, Roy B, Pierce B, Szykman JJ (2009) Assessing satellite-based fire data for use in the National Emissions Inventory. Journal of Applied Remote Sensing 3(1), 031504.
| Crossref | Google Scholar |

Soverel NO, Coops NC, Perrakis DDB, Daniels LD, Gergel SE (2011) The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada. International Journal of Wildland Fire 20, 518-531.
| Crossref | Google Scholar |

Srivastava SK, Lewis T, Behrendorff L, Phinn S (2020) Spatial databases and techniques to assist with prescribed fire management in the south-east Queensland bioregion. International Journal of Wildland Fire 30, 90-111.
| Crossref | Google Scholar |

Stavros EN, Coen J, Peterson B, Singh H, Kennedy K, Ramirez C, Schimel D (2018) Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sensing Applications: Society and Environment 11, 41-50.
| Crossref | Google Scholar |

Stavros EN, Chrone J, Cawse-Nicholson K, Freeman A, Glenn NF, Guild L, Kokaly R, Lee C, Luvall J, Pavlick R, Poulter B, Uz SS, Serbin S, Thompson DR, Townsend PA, Turpie K, Yuen K, Thome K, Wang W, Zareh S-K, Nastal J, Bearden D, Miller CE, Schimel D (2022) Designing an observing system to study the Surface Biology and Geology (SBG) of the Earth in the 2020s. Journal of Geophysical Research: Biogeosciences 128(1), e2021JG006471.
| Crossref | Google Scholar | PubMed |

Stephens SL, McIver JD, Boerner REJ, Fettig CJ, Fontaine JB, Hartsough BR, Kennedy PL, Schwilk DW (2012) The effects of forest fuel-reduction treatments in the United States. BioScience 62(6), 549-560.
| Crossref | Google Scholar |

Stephens SL, Kobziar LN, Collins BM, Davis R, Fulé PZ, Gaines W, Ganey J, Guldin JM, Hessburg PF, Hiers K, Hoagland S, Keane JJ, Masters RE, McKellar AE, Montague W, North M, Spies TA (2019) Is fire “for the birds”? How two rare species influence fire management across the US. Frontiers in Ecology and the Environment 17(7), 391-399.
| Crossref | Google Scholar |

Syphard AD, Brennan TJ, Keeley JE (2019) Drivers of chaparral type conversion to herbaceous vegetation in coastal southern California. Diversity and Distributions 25(1), 90-101.
| Crossref | Google Scholar |

Szpakowski DM, Jensen JLR (2019) A review of the applications of remote sensing in fire ecology. Remote Sensing 11(22), 2638.
| Crossref | Google Scholar |

Temudo MP, Oom D, Pereira JM (2020) Bio-cultural fire regions of Guinea-Bissau: analysis combining social research and satellite remote sensing. Applied Geography 118, 102203.
| Crossref | Google Scholar |

Tian X, Zhao F, Shu L, Wang M (2013) Distribution characteristics and the influence factors of forest fires in China. Forest Ecology and Management 310, 460-467.
| Crossref | Google Scholar |

Trisos CH, Auerbach J, Katti M (2021) Decoloniality and anti-oppressive practices for a more ethical ecology. Nature Ecology & Evolution 5(9), 1205-1212.
| Crossref | Google Scholar | PubMed |

Turner MG, Hargrove WW, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science 5(5), 731-742.
| Crossref | Google Scholar |

van Leeuwen WJD, Casady GM, Neary DG, Bautista S, Alloza JA, Carmel Y, Wittenberg L, Malkinson D (2010) Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel. International Journal of Wildland Fire 19(1), 75-93.
| Crossref | Google Scholar |

Veraverbeke S, Stavros EN, Hook SJ (2014) Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sensing of Environment 154, 153-163.
| Crossref | Google Scholar |

Veraverbeke S, Dennison P, Gitas I, Hulley G, Kalashnikova O, Katagis T, Kuai L, Meng R, Roberts D, Stavros EN (2018) Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sensing of Environment 216, 105-121.
| Crossref | Google Scholar |

Volkova L, Weiss Aparicio AG, Weston CJ (2019) Fire intensity effects on post-fire fuel recovery in Eucalyptus open forests of south-eastern Australia. Science of The Total Environment 670, 328-336.
| Crossref | Google Scholar | PubMed |

USDA (2022) Confronting the Wildfire Crisis: A Strategy for Protecting Communities and Improving Resilience in America’s Forests. (US Forest Service)

Webster KM, Halpern CB (2010) Long-term vegetation responses to reintroduction and repeated use of fire in mixed-conifer forests of the Sierra Nevada. Ecosphere 1(5), 1-27.
| Crossref | Google Scholar |

Wells AG, Munson SM, Sesnie SE, Villarreal ML (2021) Remotely sensed fine-fuel changes from wildfire and prescribed fire in a semi-arid grassland. Fire 4(4), 84.
| Crossref | Google Scholar |

Weston CJ, Di Stefano J, Hislop S, Volkova L (2022) Effect of recent fuel reduction treatments on wildfire severity in southeast Australian Eucalyptus sieberi forests. Forest Ecology and Management 505, 119924.
| Crossref | Google Scholar |

White JD, Ryan KC, Key CC, Running SW (1996) Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire 6(3), 125-136.
| Crossref | Google Scholar |

Wiens J, Sutter R, Anderson M, Blanchard J, Barnett A, Aguilar-Amuchastegui N, Avery C, Laine S (2009) Selecting and conserving lands for biodiversity: the role of remote sensing. Remote Sensing of Environment 113(7), 1370-1381.
| Crossref | Google Scholar |

Wooster MJ, Roberts GJ, Giglio L, Roy DP, Freeborn PH, Boschetti L, Justice C, Ichoku C, Schroeder W, Davies D, Smith AMS, Setzer A, Csiszar I, Strydom T, Frost P, Zhang T, Xu W, de Jong MC, Johnston JM, Ellison L, Vadrevu K, Sparks AM, Nguyen H, McCarty J, Tanpipat V, Schmidt C, San-Miguel-Ayanz J (2021) Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sensing of Environment 267, 112694.
| Crossref | Google Scholar |

Wulder MA, White JC, Alvarez F, Han T, Rogan J, Hawkes B (2009) Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of Environment 113(7), 1540-1555.
| Crossref | Google Scholar |

Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE, Allen RG, Anderson MC, Belward AS, Cohen WB, Dwyer J, Erb A, Gao F, Griffiths P, Helder D, Hermosilla T, Hipple JD, Hostert P, Hughes MJ, Huntington J, Johnson DM, Kennedy R, Kilic A, Li Z, Lymburner J, McCorkel J, Pahlevan N, Scambos TA, Schaaf C, Schott JR, Sheng Y, Storey J, Vermote E, Vogelmann J, White JC, Wynne RH, Zhu Z (2019) Current status of Landsat program, science, and applications. Remote Sensing of Environment 225, 127-147.
| Crossref | Google Scholar |

Xiao J, Chevallier F, Gomez C, Guanter L, Hicke JA, Huete AR, Ichii K, Ni W, Pang Y, Rahman AF, Sun G, Yuan W, Zhang L, Zhang X (2019) Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sensing of Environment 233, 111383.
| Crossref | Google Scholar |

Xie J, Qi T, Hu W, Huang H, Chen B, Zhang J (2022) Retrieval of live fuel moisture content based on multi-source remote sensing data and ensemble deep learning model. Remote Sensing 14(17), 4378.
| Crossref | Google Scholar |

Xu G, Zhong X (2017) Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8. Remote Sensing Letters 8(11), 1052-1061.
| Crossref | Google Scholar |

Yebra M, Dennison PE, Chuvieco E, Riaño D, Zylstra P, Hunt ER, Danson FM, Qi Y, Jurdao S (2013) A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote Sensing of Environment 136, 455-468.
| Crossref | Google Scholar |

Zeng T, Liu Z, Wang Y (2016) Large fire emissions in summer over the southeastern US: satellite measurements and modeling analysis. Atmospheric Environment 127, 213-220.
| Crossref | Google Scholar |