Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

Fireline production rate of handcrews in wildfires of the Spanish Mediterranean region

Macarena Ortega https://orcid.org/0000-0002-4904-5109 A * , Francisco Rodríguez y Silva A and Juan Ramón Molina A
+ Author Affiliations
- Author Affiliations

A Forest Fire Laboratory (LABIF), Forestry Engineering Department, University of Cordoba, 14071 Cordoba, Spain.

* Correspondence to: macarena.ortega@uco.es

International Journal of Wildland Fire 32(11) 1503-1514 https://doi.org/10.1071/WF22087
Submitted: 1 June 2022  Accepted: 15 June 2023  Published: 14 July 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Background

Handcrews dig handlines to bare mineral soil for fire containment. Increasing the amount of firefighting resources is insufficient to mitigate wildfire damage or decrease the number of large fires.

Aims

This study aims to empirically assess handcrew fireline production rates through direct monitoring of suppression actions on active wildfires.

Methods

A database was created from information gathered by crew supervisors during wildfires in southern Spain between 2014 and 2019. Fireline production rates were calculated from working time and handline length.

Key results

Mean fireline production rate during direct attack in chaparral was 0.33 m min−1 firefighter−1, whereas production in timber litter was 1.06 m min−1 firefighter−1. However, fireline production rate was considerably reduced during indirect attack, in fuel types with high fuel loading, on wildfires larger than 50 ha, after 3 h of sustained suppression action, with crews of more than nine firefighters, in unsuccessful fire containment, and when the ground crews lacked aerial support.

Conclusions

Our results suggest mean fireline production rates need to be modified by working conditions and psychological variables to better inform efficient acquisition and allocation of resources.

Implications

Knowing the operating capability of firefighting resources is important to fire managers for reducing uncertainty and guaranteeing the safety and effectiveness of suppression.

Keywords: aerial resource support, crew size, direct and indirect attack, fire containment success, firefighter productivity and safety, fuel model, suppression effectiveness, working time.

References

Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. General Technical Report INT-122. (USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT)

Bowman DMJS, Williamson GJ, Abatzoglou JT, Kolden CA, Cochrane MA, Smith AMS (2017) Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution 1, 0058.
| Crossref | Google Scholar |

Broyles G (2011) Fireline production rates. Fire Management Report 1151 1805—SDTDC. (USDA Forest Service, National Technology & Development Program: San Dimas, CA)

Budd GM, Brotherhood JR, Hendrie AL, Jeffery SE, Beasley FA, Costin BP, Zhien W, Baker MM, Cheney NP, Dawson MP (1997) Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools. International Journal of Wildland Fire 7, 105-118.
| Crossref | Google Scholar |

Calkin D, Katuwahl H, Hand M, Holmes T (2014) The effectiveness of suppression resources in large fire management in the US: A Review. In ‘Advances in forest fire research’. (Ed. DX Viegas) pp. 1548–1552. (University of Coimbra: Coimbra)

Calkin DE, Thompson MP, Finney MA (2015) Negative consequences of positive feedbacks in US wildfire management. Forest Ecosystems 2(9), 9.
| Crossref | Google Scholar |

Castilla-La Mancha (2023) Datos sobre incendios forestales. Oficina de Transparencia, Buen Gobierno y Participación. Gobierno de Castilla-La Mancha. Available at https://estadistica.castillalamancha.es/datos-sobre-incendios-forestales [verified 20 February 2023]

Chico F (Ed.) (1996) ‘Proyecto para la medición y seguimiento de incendios forestales.’ (Junta de Andalucía-EIMFOR: Sevilla) [In Spanish]

Chico F (2001) Métodos para la medición de rendimientos y evaluación de los medios aéreos en la extinción de incendios forestales. In: ‘La Gestión de los medios aéreos en la defensa contra incendios forestales. I Simposium Internacional’. (Eds AJ González, I Ribas) pp. 207–222. (Universidad de Córdoba-Junta de Andalucía: Córdoba) [In Spanish]

Chico F, Poza I (2009) Rendimiento del personal de extinción. In ‘La defensa contra incendios forestales. Fundamentos y experiencias’. (Ed. R Vélez) pp. 734–741. (McGrawHill: Madrid) [In Spanish]

Dunn CJ, Thompson MP, Calkin DE (2017) A framework for developing safe and effective large-fire response in a new fire management paradigm. Forest Ecology and Management 404, 184-196.
| Crossref | Google Scholar |

Fernandes PM, Pacheco AP, Almeida R, Claro J (2016) The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. European Journal of Forest Research 135(2), 253-262.
| Crossref | Google Scholar |

Finney MA, Grenfell IC, McHugh CW (2009) Modeling containment of large wildfires using generalized linear mixed-model analysis. Forest Science 55, 249-255.
| Crossref | Google Scholar |

Flannigan MD, Krawchuk MA, De Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18, 483-507.
| Crossref | Google Scholar |

Florec V, Thompson M, Rodríguez y Silva F (2019) Cost of suppression. In ‘Encyclopedia of Wildfires and Wildland–Urban Interface (WUI) Fires’. (Ed. S Mazello) (Springer: Cham) 10.1007/978-3-319-51727-8

Fried JS, Gilless JK (1989) Expert opinion estimation of fireline production rates. Forest Science 33, 870-877.
| Google Scholar |

Galizia LF, Curt T, Barbero R, Rodrigues M (2022) Understanding fire regimes in Europe. International Journal of Wildland Fire 31, 56-66.
| Crossref | Google Scholar |

García-Egido JB (Ed.) (2015) ‘Maquinaria pesada en la extinción de incendios forestales.’ (AIFEMA: Granada)

Generalitat Valenciana (2023) Sistema Integrado de Gestión de Incendios Forestales. Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica. Available at https://prevencionincendiosgva.es/Incendios/EstadisticasIncendios [Verified 20 February 2023]

Gobierno de España (2023) Estadística General de Incendios Forestales. Ministerio para la Transición Ecológica y el Reto Demográfico. Available at https://www.miteco.gob.es/es/biodiversidad/temas/incendios‐forestales/estadisticas‐datos.aspx [Verified 20 February 2023]

Haven L, Hunter TP, Storey TG (1982) Production rates for crews using hand tools on firelines. General Technical Report PSW-62. (USDA Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA)

Hirsch KG, Martell DL (1996) A review of initial attack fire crew productivity and effectiveness. International Journal of Wildland Fire 6(4), 199-215.
| Crossref | Google Scholar |

Holmes TP, Calkin DE (2013) Econometric analysis of fire suppression production functions for large wildland fires. International Journal of Wildland Fire 22, 246-255.
| Crossref | Google Scholar |

Jiménez V (2014) ‘Análisis de la eficacia de la combinación de herramientas de corte en la extinción de incendios forestales. Trabajo Profesional Final de Carrera.’ (ETSIAM. Universidad de Córdoba) [In Spanish]

Junta de Andalucía (2023) Estadísticas anuales del Plan INFOCA. Consejería de Sostenibilidad, Medio Ambiente y Economía Azul. Available at https://www.juntadeandalucia.es/medioambiente/portal/areas-tematicas/incendios-forestales/memorias-y-estadisticas/estadisticas-anuales-del-plan-infoca [verified 20 February 2023]

Katuwal H, Calkin DE, Hand MS (2016) Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis. Journal of Environmental Management 166, 227-236.
| Crossref | Google Scholar |

Lindquist JL (1970) Building firelines – how fast do crews work? Fire Technology 6, 126-134.
| Crossref | Google Scholar |

McCarthy GJ, Tolhurst KG, Wouters M (2003) Prediction of firefighting resources for suppression operations in Victoria’s parks and forests. No. 56. (Department of Sustainability and Environment, Forest Science Centre: Vic.) Available at https://www.ffm.vic.gov.au/__data/assets/pdf_file/0016/21067/Report-56-Prediction-of-firefighting-resources-for-suppression-operations-in-Victorias-Parks-and-Forests.pdf

Molina JR, González-Cabán A, Rodríguez y Silva F (2019) Potential effects of climate change on fire behavior, economic susceptibility and suppression costs in Mediterranean ecosystems: Córdoba Province, Spain. Forests 10, 679.
| Crossref | Google Scholar |

National Wildfire Coordinating Group (NWCG) (2021) Fire line production rate tables. Fuels Management Committee. Resource Catalog. (Frames)

O’Connor CD, Haas JR, Gannon BM, Dunn CJ, Thompson MP, Calkin DE (2022) Modelling Potential Control Locations: Development and Adoption of Data-Driven Analytics to Support Strategic and Tactical Wildfire Containment Decisions. Environmental Sciences Proceedings 17, 73.
| Crossref | Google Scholar |

Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Climatic Change 110, 215-226.
| Crossref | Google Scholar |

Plucinski MP (2019a) Fighting flames and forging firelines: wildfire suppression effectiveness at the fire edge. Current Forestry Reports 5, 1-19.
| Crossref | Google Scholar |

Plucinski MP (2019b) Contain and control: wildfire suppression effectiveness at incidents and across landscapes. Current Forestry Reports 5, 20-40.
| Crossref | Google Scholar |

Rodríguez-Marroyo JA, Villa JG, López-Satue J, Pernía R, Carballo B, García-López J, Foster C (2011) Physical and thermal strain of firefighters according to the firefighting tactics used to suppress wildfires. Ergonomics 54(11), 1101-1108.
| Crossref | Google Scholar |

Rodríguez-Marroyo JA, López-Satue J, Pernía R, Carballo B, García-López J, Foster C, Villa JG (2012) Physiological work demands of Spanish wildland firefighters during wildfire suppression. International Archives of Occupational and Environmental Health 85(2), 221-228.
| Crossref | Google Scholar |

Rodríguez y Silva F (2017) Aproximación metodológica para modelización econométrica de la productividad en la extinción de incendios forestales. In ‘Proceedings of Forest Spanish Conference’. (Ed. Sociedad Española de Ciencias Forestales) 7CFE01-386 pp. 1–12. Available at http://secforestales.org/publicaciones/index.php/congresos_forestales/article/view/19231

Rodríguez y Silva F, González-Cabán A (2016) Contribution of suppression difficulty and lessons learned in forecasting fire suppression operations productivity: a methodological approach. Journal of Forest Economics 25, 149-159.
| Crossref | Google Scholar |

Rodríguez y Silva F, Hand M (2018) Modeling the productivity of forest fire suppression operations using production functions: a methodological approach. In ‘Advances in Forest Fire Research’. (Ed. DX Viegas) pp. 1146–1154. (University of Coimbra: Coimbra) 10.14195/978-989-26-16-506_128

Rodríguez y Silva F, Molina-Martínez JR (2012) Modeling Mediterranean forest fuels by integrating field data and mapping tools. European Journal of Forest Research 131, 571-582.
| Crossref | Google Scholar |

Rodríguez y Silva F, O’Connor CD, Thompson MP, Molina Martínez JR, Calkin DE (2020) Modelling suppression difficulty: current and future applications. International Journal of Wildland Fire 29(8), 739-751.
| Crossref | Google Scholar |

Ruffault J, Curt T, Martin-StPaul NK, Moron V, Trigo RM (2018) Extreme wildfire events are linked to global change-type droughts in the northern Mediterranean. Natural Hazards and Earth System Sciences 18, 847-856.
| Crossref | Google Scholar |

Rytwinski A, Crowe KA (2010) A simulation-optimization model for selecting the location of fuel-breaks to minimize expected losses from forest fires. Forest Ecology and Management 260, 1-11.
| Crossref | Google Scholar |

Scott JH, Burgan RE (2005) Standard fire behaviour fuel model: a comprehensive set for use with Rothermel’s surface fire spread model. General Technical Report INT-153. (USDA Forest Service, Rocky Mountain Research Station: Ogden, UT)

Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: A review. Journal of Environmental Management 92, 1895-1909.
| Crossref | Google Scholar |

Thompson MP, Lauer C, Calkin D, Rieck JD, Stonesifer CS, Hand MS (2018) Wildfire response performance measurement: current and future directions. Fire 1, 21.
| Crossref | Google Scholar |