Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Methodology to obtain isochrones from large wildfires

F. Manzano-Agugliaro A B D , J. Pérez-Aranda A and J. L. De La Cruz C
+ Author Affiliations
- Author Affiliations

A Department of Engineering, University of Almeria, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano, E-04120 Almería, Spain.

B BITAL (Research Center on Agricultural and Food Biotechnology), University of Almeria, La Cañada de San Urbano, E-04120 Almería, Spain.

C Department of Applied Physics, University of Cordoba, Campus de Rabanales, Edificio Albert Einstein (C2), Carretera de Madrid, Km 396, E-14071 Córdoba, Spain.

D Corresponding author. Email: fmanzano@ual.es

International Journal of Wildland Fire 23(3) 338-349 https://doi.org/10.1071/WF13166
Submitted: 2 March 2013  Accepted: 12 December 2013   Published: 8 April 2014

Abstract

In Mediterranean countries, a change in traditional uses of land has caused an increase in both the number of fires and the land area affected by fires. This situation creates a need to improve the efficiency and effectiveness of wildfire extinguishing devices. This improvement should be based on knowledge of the fire behaviour of various fires affecting similar areas. To study these fires, we considered a methodology to obtain isochrones at different stages of a wildfire through temporal georeferencing of aerial fire photographs. This methodology was applied to two large wildfires (1098 and 4609 ha) that occurred in 2009 in the south of Spain. A total of 463 and 611 photographs were considered to respectively obtain seven and nine isochrones. These isochrones are representative of the development of the fires. In periods of greater intensity, this study exhibits a rate of propagation much higher than expected, reaching 7.8 ha min–1 of burned surface and 160.0 m min–1 of perimeter growth in one example, whereas if we considered only the final perimeter of the fire, the speed of burned perimeter generation would be 28.2 m min–1 and of burned surface, 2.4 ha min–1.

Additional keywords: aerial photography, georeferencing, isochrone, rate of spread, wildfire.


References

Alasalmi H, Praks J, Arslan AN, Koskinen J, Hallikainen M, Hyyppä J (1998) Investigation of snow and forest properties by using airborne SAR data. In ‘Second International Workshop on Retrieval of Bio- and Geo-physical Parameters from SAR Data for Land Applications’. ESA Special Publication 441, pp. 495–502. (ESA-ESTEC: Nordwijk, the Netherlands)

Albini FA (1976) Predicting fire behavior and effects. USDA Forest Service General Technical Report INT-30. (Ogden, UT)

Alexander ME, Lanoville RA (1987) Wildfires as a source of fire behavior data: a case study from Northwest Territories, Canada. In ‘Conference Papers. Ninth Conference on Fire and Forest Meteorology’, 21–29 April. San Diego, CA. (Eds R Fujioka, C Rice) pp. 86–93. (American Meteorological Society: Boston, MA)

Alexander ME, Thomas DA (2003) Wildland fire behavior case studies and analyses: other examples, methods, reporting standards, and some practical advice. Fire Management Today, USDA Forest Service 63, 4–12.

Andrews PL (1986) BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem, part 1. USDA Forest Service, Intermountain Research Station, General Technical Report INT-194. (Ogden, UT)

Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D (2007) Evaluation of FARSITE simulator in Mediterranean maquis. International Journal of Wildland Fire 16, 563–572.
Evaluation of FARSITE simulator in Mediterranean maquis.Crossref | GoogleScholarGoogle Scholar |

Biasion A, Mondino EB, Tonolo FG, Rinaudo F (2006) High resolution satellite images for map production in developing countries. In ‘The African Association of Remote Sensing and Environment 6th Conference Proceedings’, 30 October–2 Novemver 2006. (Cairo, Egypt) Available at http://www.ithacaweb.org/media/pubs/high_res_sat_images_map_production.pdf [Verified 21 February 2014]

Catry F, Rego F, Baçao F, Moreira F (2009) Modelling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire 18, 921–931.
Modelling and mapping wildfire ignition risk in Portugal.Crossref | GoogleScholarGoogle Scholar |

Chandler CC (1976) Meteorological needs of fire danger and fire behaviour. In ‘Proceedings of the Fourth National Conference on Fire and Forest Meteorology’, 16–18 November, St Louis, MO. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, General Technical Report RM-32, pp. 38–41. (Fort Collins, CO)

Consejería de Medio Ambiente (2003) Chapter XV: Medios Aéreos. In ‘Plan INFOCA. Un plan de acción al servicio del monte mediterráneo andaluz’. (Consejería de Medio Ambiente, Junta de Andalucía: Sevilla)

Duguy B, Alloza JA, Röder A, Vallejo R, Pastor F (2007) Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain). International Journal of Wildland Fire 16, 619–632.
Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain).Crossref | GoogleScholarGoogle Scholar |

Fallas J (1999) Sistemas Integrados de Información Geográfica. Funciones y Operaciones de un SIG. Programa Nacional en Manejo de Vida Silvestre y Escuela de Ciencias Ambientales. Universidad Nacional. Heredia (Costa Rica)

Finney MA (1994) Modeling the spread and behaviour of prescribed natural fires. In ‘Proceedings of the 12th Conference on Fire and Forest Meteorology’, 26–28 October 1993, Jekyll Island, GE, USA. (Eds JD Cohen, JM Saveland, DD Wade) pp. 138–143. (Society of American Foresters, American Meteorological Society: Bethesda, MD)

Finney MA (1998) FARSITE: Fire Area Simulator-model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4. (Fort Collins, CO)

Finney MA (2006) An overview of FlamMap fire modeling capabilities. In ‘Fuels Management – How to Measure Success: Conference Proceedings’, 28–30 March 2006, Portland, OR. (Eds PL Andrews, BW Butler) USDA Forest Service, Rocky Mountain Research Station, Proceedings P-41, pp. 213–220. (Fort Collins, CO)

Finney MA, Ryan KC (1995) Use of the FARSITE fire growth model for fire prediction in the US national parks. In ‘Proceedings of the International Emergency Management and Engineering Conference’, 9–12 May 1995, Nice, France. (Eds JD Sullivan, J Luc Wybo, L Buisson) pp. 183–189. (TIEMES: Dallas, TX)

Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale lanscape pattern. Landscape Ecology 1, 19–28.
Neutral models for the analysis of broad-scale lanscape pattern.Crossref | GoogleScholarGoogle Scholar |

Gill AM, Groves RH, Noble IR (1981). ‘Fire and the Australian Biota.’ (Australian Academy of Science: Canberra)

Grillo F, Castellnou M, Molina D, Martínez E, Díaz D (2008) ‘Análisis del incendio Forestal: Planificación de la extinción.’ (AIFEMA)

Hirsch GK (1989) Documenting wildfire behavior: the 1988 Brereton Lake Fire, Manitoba. Fire Management Notes, USDA Forest Service 50, 45–48.

Hughes ML, McDowell PF, Marcus WA (2006) Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74, 1–16.
Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS.Crossref | GoogleScholarGoogle Scholar |

Kushla JD, Ripple WJ (1997) The role of terrain in a fire mosaic of a temperate coniferous forest. Forest Ecology and Management 95, 97–107.
The role of terrain in a fire mosaic of a temperate coniferous forest.Crossref | GoogleScholarGoogle Scholar |

Le Houerou HN (1987) Vegetation wildfires in the Mediterranean basin: evolution and trends. Ecología Mediterránea 13, 13–23.

Lee SY, Kim DH, Won MS, An SH, Lee MB (2004) The analysis of forest fire extension cause through a case study. In ‘6th Asia-Oceania Symposium on Fire Science & Technology Session C’, 17–20 March, Daefu, South Korea. Available at http://www.iafss.org/publications/aofst/6/4c-1/view [Verified 21 February 2014]

Luke RH, McArthur AG (1978) ‘Bushfires in Australia.’ (Australian Government Publishing Service: Canberra) [Reprinted in 1986]

Molina DM, Castellnou M (2002) Wildland fuel management in Catalonia (NE Spain). In ‘Actes de la 1ère Conférence Internationale sur les Stratégies de Prévention des Incendies dans les Forêts d’Europe du Sud’, 31 January–2 February 2002, Bordeaux, France. (Préventique: Bordeaux)

Moreno JM, Vázquez A, Vélez R (1998) Recent history of forest fires in Spain. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 159–186. (Backhuys Publishers: Leiden, the Netherlands)

Núñez MR, Calvo L, Pando V, Bravo F (2008) Floristic changes induced by fire on Pinus sylvestris plantations in northwest of Spain. Investigacion Agraria-Sistemas y Recursos Forestales 17, 168–177.

Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In ‘Remote Sensing of Large Wildfires in the European Mediterranean Basin’. (Eds E.Chuvieco) pp. 3–16. (Springer: Berlin)

Pereira MG, Trigo RM, Camara CC, Pereira JMC, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology 129, 11–25.
Synoptic patterns associated with large summer forest fires in Portugal.Crossref | GoogleScholarGoogle Scholar |

Platt RV, Schoennagel T (2009) An object-oriented approach to assessing changes in tree cover in the Colorado Front range 1939–1999. Forest Ecology and Management 258, 1342–1349.
An object-oriented approach to assessing changes in tree cover in the Colorado Front range 1939–1999.Crossref | GoogleScholarGoogle Scholar |

Podur J, Wotton BM (2011) Defining fire spread event days for fire-growth modelling. International Journal of Wildland Fire 20, 497–507.
Defining fire spread event days for fire-growth modelling.Crossref | GoogleScholarGoogle Scholar |

Rego FC (1991) Land use changes and wildfires. In ‘Responses of Forest Ecosystems to Environmental Changes’. (Eds A Teller, P Mathy, JNR Jeffers) pp. 367–373. (Elsevier Applied Science: London)

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115. (Ogden, UT)

Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service, Intermountain Forest and Range Experimental Station, General Technical Report GTR-INT-143, pp. 59–62. (Missoula, MT)

Rothermel RC, Mutch RW (1986) Behavior of the life-threatening butte fire: August 27–29, 1985. Fire Management Notes 47, 14–24.

Sociedad Aeronáutica Peninsular (2007) Coordinación de Medios aéreos. Avión vs Helicóptero. In ‘4th International Wildland Fire Conference’, 13–17 May 2007, Sevilla, Spain. (Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente: Sevilla) Available at http://www.fire.uni-freiburg.de/sevilla-2007/contributions/doc/cd/SESIONES_TEMATICAS/ST7/SAP_SL_SPAIN.pdf [Verified 21 February 2014]

Trabaud L (1981) Man and fire: impact on Mediterranean vegetation. In ‘Mediterranean-type Shrublands’. (Eds F Di Castri, DW Goodall, RL Spechts) Ecosystems of the World 11, pp. 523–537 (Elsevier: Amsterdam)

Trabaud L (1987) Dynamics after fire of sclerophyllous plant communities in the Mediterranean basin. Ecologia Mediterranea 13, 25–37.

Turner MG, Gardner RH, Dale VH, O’Neill RV (1989) Predicting the spread of disturbance across heterogeneus landscapes. Oikos 55, 121–129.
Predicting the spread of disturbance across heterogeneus landscapes.Crossref | GoogleScholarGoogle Scholar |

Xu H, Gao P (2008) Custom image processing capabilities in ARCGIS. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences 37, 263–266.