Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina
Lucas O. Bianchi A C and Guillermo E. Defossé A BA Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP – CONICET), Ruta 259, km 16,4. C.C. 14. 9200 Esquel, Chubut, Argentina.
B Universidad Nacional de la Patagonia San Juan Bosco, Sede Esquel, C.C. 14. 9200, Esquel, Chubut, Argentina.
C Corresponding author. Email: lbianchi@ciefap.org.ar
International Journal of Wildland Fire 24(3) 340-348 https://doi.org/10.1071/WF13099
Submitted: 30 October 2012 Accepted: 17 October 2014 Published: 23 March 2015
Abstract
Wildfires are common from summer to early fall in Patagonian forests of Argentina. Live fuel moisture content (LFMC) and leaf ignition are important factors for understanding fire behaviour. In this study, we determined seasonal LFMC and leaf ignition of some key fire-prone species of these forests, and their relationships with environmental variables. Species investigated were the native trees ñire (Nothofagus antarctica) and cypress (Austrocedrus chilensis), the understorey tree-like radal (Lomatia hirsuta) and laura (Schinus patagonicus), the bamboo caña colihue (Chusquea culeou), and the non-native black poplar (Populus nigra). LFMC differed among species, with caña colihue having lower values (LFMC <100%); ñire, laura, cypress, and radal having medium values (110–220%); and black poplar, upper values (>220%). Ignition characteristics differed among species (caña colihue > ñire > radal > cypress > laura > black poplar) and were inversely related to LFMC. Correlations between LFMC and environmental variables were highly significant for caña colihue, significant for ñire, radal, and laura, and weakly significant or non-significant for cypress and black poplar. These results contribute to our understanding of fire behaviour, and validate the fuel typology for Patagonian forests. At the same time, they add some useful knowledge for comparison with other fire-prone Mediterranean ecosystems around the world.
Additional keywords: fire behaviour, foliar moisture, Patagonian forests, wildfires.
References
Agee JK, Wright CS, Williamson N, Huff MH (2002) Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior. Forest Ecology and Management 167, 57–66.| Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior.Crossref | GoogleScholarGoogle Scholar |
Alessio GA, Peñuelas J, Llusià J, Ogaya R, Estiarte M, De Lillis M (2008) Influence of water and terpenes on flammability in some dominant Mediterranean species. International Journal of Wildland Fire 17, 274–286.
| Influence of water and terpenes on flammability in some dominant Mediterranean species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslGqtL0%3D&md5=5a871a2174a6a034069fae70d6886cabCAS |
Alexander ME (2010) Surface fire spread potential in trembling aspen during summer in the Boreal Forest Region of Canada. Forestry Chronicle 86, 200–212.
| Surface fire spread potential in trembling aspen during summer in the Boreal Forest Region of Canada.Crossref | GoogleScholarGoogle Scholar |
Alexander ME, Cruz MG (2013) Assessing the effect of foliar moisture on the spread rate of crown fires. International Journal of Wildland Fire 22, 415–427.
| Assessing the effect of foliar moisture on the spread rate of crown fires.Crossref | GoogleScholarGoogle Scholar |
Anderson HE (1970) Forest fuel ignitability. Fire Technology 6, 312–319.
| Forest fuel ignitability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhsVent7g%3D&md5=defa65dc0f812daee680e7458da072fcCAS |
Bertiller MB, Beeskow AM, Coronato F (1991) Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). Journal of Arid Environments 21, 1–11.
Blackhall M, Raffaele E, Veblen TT (2012) Is foliar flammability of woody species related to time since fire and herbivory in northwest Patagonia, Argentina? Journal of Vegetation Science 23, 931–941.
| Is foliar flammability of woody species related to time since fire and herbivory in northwest Patagonia, Argentina?Crossref | GoogleScholarGoogle Scholar |
Bran D, Pérez A, Barrios D, Pastorino M, Ayesa J (2002) Eco-región valdiviana: distribución actual de los bosques de ‘ciprés de la cordillera’ (Austrocedrus chilensis)-Escala 1 : 250.000. INTA – Administración de Parques Nacionales – Fundación Vida Silvestre Argentina. (Bariloche, Río Negro)
Bunting SC, Wright HA, Wallace WH (1983) Seasonal variation in the ignition time of redberry juniper in West Texas. Journal of Range Management 36, 169–171.
| Seasonal variation in the ignition time of redberry juniper in West Texas.Crossref | GoogleScholarGoogle Scholar |
Byram GM (1959) Combustion of forest fuels. In ‘Forest Fire: Control and Use’ (Ed. KP Davis) pp. 61–89. (McGraw-Hill: New York)
Castro FX, Tudela A, Sebastià MT (2003) Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agricultural and Forest Meteorology 116, 49–59.
| Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain).Crossref | GoogleScholarGoogle Scholar |
Curt T, Schaffhauser A, Borgniet L, Dumas C, Estève R, Ganteaume A, Jappiot M, Martin W, N’Diaye A, Poilvet B (2011) Litter flammability in oak woodlands and shrublands of southeastern France. Forest Ecology and Management 261, 2214–2222.
| Litter flammability in oak woodlands and shrublands of southeastern France.Crossref | GoogleScholarGoogle Scholar |
De Lillis M, Bianco PM, Loreto F (2009) The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species. International Journal of Wildland Fire 18, 203–212.
| The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFOiur0%3D&md5=6d64a09aca5d0f6d57b27d1c1b1b228dCAS |
DeByle NV, Bevins CD, Fischer WC (1987) Wildfire occurrence in aspen in the interior western United States. Western Journal of Applied Forestry 2, 73–76.
Defossé GE, Loguercio GA, Oddi FJ, Molina JC, Kraus PD (2011) Potential CO2 emissions mitigation through forest prescribed burning: a case study in Patagonia, Argentina. Forest Ecology and Management 261, 2243–2254.
| Potential CO2 emissions mitigation through forest prescribed burning: a case study in Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |
Dentoni MC, Defossé GE, Rodríguez NF, Muñoz MM, Colomb H (1999) Estudio de Grandes Incendios: El caso de la Ea. San Ramón en Bariloche, Río Negro – Patagonia Argentina. Plan Nacional de Manejo del Fuego – CIEFAP–GTZ. (Esquel, Chubut)
Dentoni MC, Defossé GE, del Valle HF, Labraga JC (2001) Atmospheric and fuel conditions related to the Puerto Madryn Fire of January 21, 1994. Meteorological Applications 8, 361–370.
| Atmospheric and fuel conditions related to the Puerto Madryn Fire of January 21, 1994.Crossref | GoogleScholarGoogle Scholar |
Dimitrakopoulos AP, Bemmerzouk AM (2003) Predicting live herbaceous moisture content from a seasonal drought index. International Journal of Biometeorology 47, 73–79.
Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of Mediterranean forest fuels. Fire Technology 37, 143–152.
| Flammability assessment of Mediterranean forest fuels.Crossref | GoogleScholarGoogle Scholar |
Dimitri MJ (1972) ‘La región de los Bosques Andino-Patagónicos.’ (INTA: Buenos Aires)
Dunteman GH (1989) ‘Principal Components Analysis.’ Vol. 69. (Sage Publications: Newbury Park, CA)
Elvira LM, Hernando C (1989) Inflamabilidad y energía de las especies de sotobosque: estudio piloto con aplicación a los incendios forestales. Monografías INIA N°68. (Ministerio de Agricultura Pesca y Alimentación: Madrid)
Engber EA, Varner JM (2012) Patterns of flammability of the California oaks: the role of leaf traits. Canadian Journal of Forest Research 42, 1965–1975.
| Patterns of flammability of the California oaks: the role of leaf traits.Crossref | GoogleScholarGoogle Scholar |
Fonda RW (2001) Burning characteristics of needles from eight pine species. Forest Science 47, 390–396.
Fowells HA (1965) Silvics of forest trees of the United States. USDA Forest Service, Agriculture Handbook No. 271. Prepared by the Division of Timber Management Research, Forest Service (Washington, DC)
Fuglem PL (1979) Foliar moisture content of Central Alberta conifers and its implications in crown fire occurrence. MSc thesis, University of Alberta, Edmonton.
Ganteaume A, Guijarro M, Jappiot M, Hernando C, Lampin-Maillet C, Pérez-Gorostiaga P, Vega JA (2011) Laboratory characterization of firebrands involved in spot fires. Annals of Forest Science 68, 531–541.
| Laboratory characterization of firebrands involved in spot fires.Crossref | GoogleScholarGoogle Scholar |
Gill AM, Zylstra P (2005) Flammability of Australian forests. Australian Forestry 68, 87–93.
| Flammability of Australian forests.Crossref | GoogleScholarGoogle Scholar |
Gyenge JE, Fernández ME, Dalla Salda G, Schlichter T (2005) Leaf and whole plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic.Serm. & Bizarri: implication on its drought resistance capacity. Annals of Forest Science 62, 297–302.
| Leaf and whole plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic.Serm. & Bizarri: implication on its drought resistance capacity.Crossref | GoogleScholarGoogle Scholar |
Gyenge JE, Fernández ME, Schlichter T (2007) Influence of radiation and drought on gas exchange on Austrocedrus chilensis seedlings. Bosque 28, 220–235.
| Influence of radiation and drought on gas exchange on Austrocedrus chilensis seedlings.Crossref | GoogleScholarGoogle Scholar |
Keyser TL, Smith FW, Shepperd WD (2005) Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA. Canadian Journal of Forest Research 35, 2679–2684.
| Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA.Crossref | GoogleScholarGoogle Scholar |
Kitzberger T (2005) Hacia una tipología forestal basada en procesos dinámicos: el caso Ciprés de la Cordillera. In ‘Actas de 1er Reunión sobre Ecología, Conservación y Uso de los Bosques de Ciprés de la Cordillera – Ecociprés’. (Ed. CIEFAP) pp. 13–18 (Esquel, Chubut)
Kuljian H, Varner JM (2013) Foliar consumption across a sudden oak death chronosequence in laboratory fires. Fire Ecology 9, 33–44.
| Foliar consumption across a sudden oak death chronosequence in laboratory fires.Crossref | GoogleScholarGoogle Scholar |
La Manna L, Bava J, Collantes M, Rajchenberg M (2006) Características estructurales de los bosques de Austrocedrus chilensis afectados por “mal del ciprés” en Patagonia, Argentina. Bosque 27, 135–145.
| Características estructurales de los bosques de Austrocedrus chilensis afectados por “mal del ciprés” en Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |
Larcher W (1983) ‘Physiological Plant Ecology.’ (Springer-Verlag: Berlin)
Madrigal J, Marino E, Guijarro M, Hernando C, Díez C (2012) Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning. Annals of Forest Science 69, 387–397.
| Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning.Crossref | GoogleScholarGoogle Scholar |
Martin RE, Gordon DA, Gutierrez ME, Lee DS, Molina DM, Schroeder RA, Sapsis DB, Stephens SL, Chambers M (1994) Assessing the flammability of domestic and wildland vegetation. In ‘Proceedings of the 12th Conference on Fire and Forest Meteorology’, 26–28 October 1993, Jekyll Island, GA. pp. 130–137 (Society of American Foresters: Bethesda, MD)
Massari G, Leopaldi A (1998) Leaf flammability in Mediterranean species. Plant Biosystems 132, 29–38.
| Leaf flammability in Mediterranean species.Crossref | GoogleScholarGoogle Scholar |
Matthews S, McCaw WL, Neal JE, Smith RH (2007) Testing a process-based fine fuel moisture model in two forest types. Canadian Journal of Forest Research 37, 23–35.
| Testing a process-based fine fuel moisture model in two forest types.Crossref | GoogleScholarGoogle Scholar |
Ormeño E, Céspedes B, Sánchez IA, Velasco-García A, Moreno JM, Fernandez C, Baldy V (2009) The relationship between terpenes and flammability of leaf litter. Forest Ecology and Management 257, 471–482.
| The relationship between terpenes and flammability of leaf litter.Crossref | GoogleScholarGoogle Scholar |
Pellizzaro G, Duce P, Ventura A, Zara P (2007) Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. International Journal of Wildland Fire 16, 633–641.
| Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin.Crossref | GoogleScholarGoogle Scholar |
Peri PL, Martínez Pastur G, Lencinas MV (2009) Photosynthetic response to different light intensities and water status of two main Nothofagus species of southern Patagonian Forest, Argentina. Journal of Forest Science 55, 101–111. . Available at http://www.agriculturejournals.cz/web/jfs.htm?volume=55&firstPage=101&type=publishedArticle [Verified 18 December 2014]
R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/ [Verified 18 December 2014]
Rothermel RC, Anderson HE (1966) Fire spread characteristics determined in the laboratory. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-30 (Ogden, UT)
Scarff FR, Westoby M (2006) Leaf litter flammability in some semi-arid Australian woodlands. Functional Ecology 20, 745–752.
| Leaf litter flammability in some semi-arid Australian woodlands.Crossref | GoogleScholarGoogle Scholar |
Schlichter T, Laclau P (1998) Ecotono estepa-bosque y plantaciones forestales en la Patagonia norte. Ecología Austral 8, 285–296.
Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. American Naturalist 162, 725–733.
| Flammability is a niche construction trait: canopy architecture affects fire intensity.Crossref | GoogleScholarGoogle Scholar | 14737710PubMed |
Trabaud L (1974) Experimental study on the effects of prescribed burning on a Quercus coccifera L. garrigue: early results. Tall Timbers Fire Ecology Conference Proceedings 13, 97–129.
Trabaud L (1976) Inflammabilité et combustibilité des principales espèces de garrigues de la région méditerranéenne. Acta Oecologica. Oecologica Plantarum 11, 117–136.
Valette JC (1990) Inflammabilité des espèces forestières Mediterranéennes. Conséquences sur la combustibilité des formations forestières. Revue Forestiére Francaise 42, 76–92.
| Inflammabilité des espèces forestières Mediterranéennes. Conséquences sur la combustibilité des formations forestières.Crossref | GoogleScholarGoogle Scholar |
Van Wagner CE (1977) Conditions for the start and spread of crown fire. Canadian Journal of Forest Research 7, 23–34.
| Conditions for the start and spread of crown fire.Crossref | GoogleScholarGoogle Scholar |
Veblen TT (1982) Growth patterns of Chusquea bamboos in the understory of chilean Nothofagus forests and their influences in forest dynamics. Bulletin of the Torrey Botanical Club 109, 474–487.
| Growth patterns of Chusquea bamboos in the understory of chilean Nothofagus forests and their influences in forest dynamics.Crossref | GoogleScholarGoogle Scholar |
Villalba R (1995) Climatic influences on forest dynamics along the forest–steppe ecotone in northern Patagonia. PhD thesis, University of Colorado, Boulder, CO.
Walter H, Lieth H (1967) ‘Klimmadiagram Weltatlas’ (Fischer-Verlag: Jena)
White RH, Zipperer WC (2010) Testing and classification of individual plants for fire behaviour: plant selection for the wildland–urban interface. International Journal of Wildland Fire 19, 213–227.
| Testing and classification of individual plants for fire behaviour: plant selection for the wildland–urban interface.Crossref | GoogleScholarGoogle Scholar |
Wright HA, Bailey AW (1982) ‘Fire Ecology. United States and Canada’ (John Wiley and Sons: New York)
Xanthopoulos G, Wakimoto RH (1993) Time to ignition – temperature–moisture relationship for branches of three western conifers. Canadian Journal of Forest Research 23, 253–258.
| Time to ignition – temperature–moisture relationship for branches of three western conifers.Crossref | GoogleScholarGoogle Scholar |