Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Identifying location and causality of fire ignition hotspots in a Mediterranean region

José Ramón Gonzalez-Olabarria A E F , Lluis Brotons A B , David Gritten A C , Antoni Tudela D and José Angel Teres D
+ Author Affiliations
- Author Affiliations

A Centre Tecnològic Forestal de Catalunya (CTFC), Carretera Sant Llorenç de Morunys, E-25280 Solsona, Spain.

B Centre for Ecological Research and Applied Forestries (CREAF), Autonomous University of Barcelona, Bellaterra, E-08193 Cerdanyola del Vallès, Spain.

C RECOFTC – The Center for People and Forests, PO Box 1111, Kasetsart Post Office, Bangkok, 10903, Thailand.

D Servei de Prevenció d’incendis, Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, E-08130 Santa Perpètua de Mogola, Spain.

E Present address: Carretera de Sant Llorenç de Morunys km 2, CTFC, E-25280, Solsona, Lleida, Spain.

F Corresponding author. Email: jr.gonzalez@ctfc.es

International Journal of Wildland Fire 21(7) 905-914 https://doi.org/10.1071/WF11039
Submitted: 19 March 2011  Accepted: 22 February 2012   Published: 11 July 2012

Abstract

Fire ignitions tend to be spatially aggregated depending on their causality. In highly populated regions, such as the northern Mediterranean basin, human activities are the main cause of ignitions. The ability to locate zones with an intense and recurrent history of fire occurrence and identify their specific cause can be helpful in the implementation of measures to reduce the problem. In the present study, kernel methods, non-parametric statistical methods for estimating the spatial distribution of probabilities of point-based data, are used to define ignition hotspots based on historical records of fire ignitions in Catalonia for the period 1995–2006. Comparison of the cause of the ignitions within the area of the hotspots enabled analysis of the relation between the cause of the ignitions and the occurrence of hotspots. The results obtained highlighted that the activity of arsonists showed strong spatial clustering, with the share of intentionally caused ignitions within the hotspot areas accounting for 60.1% of the fires, whereas for the whole of Catalonia they only represented 24.3%. The findings of the study provide an opportunity to optimally allocate law-enforcement and educational resources within hotspot areas.

Additional keywords: arsonist activity, Catalonia, ignition causality, kernel analysis.


References

Amatulli G, Perez-Cabello F, de la Riva J (2007) Mapping lightning/human-caused wildfires occurrence under ignition-point location uncertainty. Ecological Modelling 200, 321–333.
Mapping lightning/human-caused wildfires occurrence under ignition-point location uncertainty.Crossref | GoogleScholarGoogle Scholar |

Badia A, Saur D, Cerdan R, Llurdes JC (2002) Causality and management of forest fires in Mediterranean environments: an example from Catalonia. Environmental Hazards 4, 23–32.
Causality and management of forest fires in Mediterranean environments: an example from Catalonia.Crossref | GoogleScholarGoogle Scholar |

Badia-Perpinyá A, Pallares-Barbera M (2006) Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia. International Journal of Wildland Fire 15, 187–196.
Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia.Crossref | GoogleScholarGoogle Scholar |

Brunsdon CF (1995) Estimating probability surfaces for geographical point data: an adaptive kernel algorithm. Computers & Geosciences 21, 877–894.
Estimating probability surfaces for geographical point data: an adaptive kernel algorithm.Crossref | GoogleScholarGoogle Scholar |

Butry DT, Pye JM, Prestemon JP (2002) Prescribed fire in the interface: separating the people from the trees. In ‘Proceedings of the Eleventh Biennial Southern Silvicultural Research Conference’. (Ed. KW Outcalt). USDA Forest Service, Southern Research Station, General Technical Report GTR-SRS-48, pp. 132–136. (Asheville, NC)

Carmel YS, Pazb S, Jahashana F, Shoshanya M (2009) Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management 257, 370–377.
Assessing fire risk using Monte Carlo simulations of fire spread.Crossref | GoogleScholarGoogle Scholar |

Cohen J (2008) The wildland–urban interface fire problem forest history today: a consequence of the fire exclusion paradigm. Forest History Today (Fall), 20–26. Available at http://www.fs.fed.us/rm/pubs_other/rmrs_2008_cohen_j002.pdf [Verified 12 June 2012]

de la Riva J, Pérez-Cabello F, Lana-Renault N, Koutsias N (2004) Mapping wildfire occurrence at regional scale. Remote Sensing of Environment 92, 288–294.
Mapping wildfire occurrence at regional scale.Crossref | GoogleScholarGoogle Scholar |

FAO (2007) Fire Management Global Assessment 2006. Food and Agriculture Organization of the United Nations, FAO Forestry Paper Number 151. A thematic study prepared in the framework of the Global Forest Resource Assessment 2005. (Rome)

Genton MG, Butry DT, Gumpertz ML, Prestemon J (2006) Spatiotemporal analysis of wildland fire ignitions in the St Johns River Water Management District, Florida. International Journal of Wildland Fire 15, 87–97.
Spatiotemporal analysis of wildland fire ignitions in the St Johns River Water Management District, Florida.Crossref | GoogleScholarGoogle Scholar |

González-Olabarria JR, Mola-Yudego B, Pukkala T, Palahí M (2011) Using multiscale spatial analysis to assess fire ignition density in Catalonia, Spain. Annals of Forest Science 68, 861–871.
Using multiscale spatial analysis to assess fire ignition density in Catalonia, Spain.Crossref | GoogleScholarGoogle Scholar |

INDESCAT (2008) ‘Anuari Estadístic de Catalunya.’ (Institut d’Estadística de Catalunya: Generalitat de Catalunya) Available at http://www.idescat.cat/pub/?id=aec [Verified 12 June 2012]

Koutsias N, Kalaboukis KD, Allgöwer B (2004) Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods. Natural Resource Modeling 17, 359–375.
Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods.Crossref | GoogleScholarGoogle Scholar |

Martell DL (2007) Forest fire management: current practices and new challenges for operational researchers. In ‘Handbook of Operations Research in Natural Resources’. (Eds A Weintraub, CR Trond Bjørndal, R Epstein, J Miranda) (Springer Science+Business Media Publishing: New York)

MIMAM (2007) ‘Los Incendios Forestales en España Año 2007.’ (Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid)

Omi PN (2005) ‘Forest Fires: a Reference Handbook.’ (ABC-CLIO: Santa Barbara, CA)

Podur J, Martell DL, Csillag F (2003) Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecological Modelling 164, 1–20.
Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998.Crossref | GoogleScholarGoogle Scholar |

Prestemon JP, Butry DB (2005) Time to burn: modeling wildland arson as an autoregressive crime function. American Journal of Agricultural Economics 87, 756–770.
Time to burn: modeling wildland arson as an autoregressive crime function.Crossref | GoogleScholarGoogle Scholar |

Prestemon JP, Pye JM, Butry DT, Holmes TP, Mercer DE (2002) Understanding broad-scale wildfire risks in a human-dominated landscape. Forest Science 48, 685–693.

Rodgers AR, Carr AP (1998) HRE: the Home Range Extension for ArcView. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research. (Thunder Bay, ON) Available at http://flash.lakeheadu.ca/~arodgers/hre/SRN-HRT.pdf [Verified 18 March 2011]

Rorig ML, Ferguson SA (1999) Characteristics of lightning and wildland fire ignition in the Pacific Northwest. Journal of Applied Meteorology 38, 1565–1575.
Characteristics of lightning and wildland fire ignition in the Pacific Northwest.Crossref | GoogleScholarGoogle Scholar |

Silverman BW (1986) ‘Density Estimation for Statistics and Data Analysis.’ (Chapman and Hall Publishing: London)

Terradas J, Piñol J (1996). Els grans incendis: condicions meteorològiques i de vegetació per al seu desenvolupament. In ‘Ecologia del Foc’. (Ed. J Terradas) (Proa Publishing: Barcelona)

Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168.
Kernel methods for estimating the utilization distribution in home-range studies.Crossref | GoogleScholarGoogle Scholar |

Worton BJ (1995) A convex hull-based estimator of home-range size. Biometrics 51, 1206–1215.
A convex hull-based estimator of home-range size.Crossref | GoogleScholarGoogle Scholar |