Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Effects of flame interaction on the rate of spread of heading and suppression fires in shrubland experimental fires

J. A. Vega A D , E. Jiménez A , J.-L. Dupuy B and R. R. Linn C
+ Author Affiliations
- Author Affiliations

A Centro de Investigación Forestal–Lourizán, PO Box 127, E-36080 Pontevedra, Spain.

B Institut National de la Recherche Agronomique (INRA), Unité de Recherche 629, Ecologie des Forêts Méditerranéennes Site Agroparc, F-84914 Avignon, Cedex 9, France.

C Los Alamos National Laboratory (LANL), Earth and Environmental Sciences Division, Los Alamos, NM 87544, USA.

D Corresponding author. Email: jose.antonio.vega.hidalgo@xunta.es

International Journal of Wildland Fire 21(8) 950-960 https://doi.org/10.1071/WF10124
Submitted: 8 November 2010  Accepted: 11 April 2012   Published: 26 July 2012

Abstract

Suppression fires are frequently used in wildland firefighting operations. However, little is known about how suppression fires behave and how the main front and the suppression fire interact. Lack of information limits the operational use and effectiveness of suppression fires and compromises the safety of firefighters. A series of experimental fires were conducted in a shrubland fuel complex in Galicia to quantify the effect of the interaction between a heading fire burning upslope with the prevailing wind and a suppression fire burning downslope from a control line against the wind. An empirical model was developed to estimate the possible effect of interaction between fronts on the rate of spread of both fronts. For heading fires, the explanatory variables were: wind speed on the windward side of the fire, distance between fronts and slope angle. In contrast, for suppression fires, the only significant explanatory variable was the distance between fronts. The models reflected the observed low to moderate acceleration in the rate of spread of both fronts and the short distance over which interaction occurred (<20 m). The study revealed that the safe and effective use of suppression firing is more limited than previously expected. In fact, with moderately high wind velocities on flat and moderately steep terrain, the use of line firing appeared unsafe.

Additional keywords: fire fighting, in-draft, mixed heathland wildfire behaviour.


References

Anderson SAJ, Anderson WR (2010) Ignition and fire spread thresholds in gorse (Ulex europaeus). International Journal of Wildland Fire 19, 589–598.
Ignition and fire spread thresholds in gorse (Ulex europaeus).Crossref | GoogleScholarGoogle Scholar |

Andrews PL, Rothermel RC (1982) Charts for interpreting wildland fire behavior characteristics. USDA Forest Service, Intermountain Research Station Research Paper INT-RP-131. (Ogden, UT)

Arévalo C (1968) El contrafuego. Su utilización para cortar y extinguir los incendios forestales. Montes 142, 307–323.

Artsybashev ES (1985) ‘Forest Fires and their Control.’ Russian translation series. pp. 120–123. (AA Balkema: Rotterdam)

Baeza M, De Luis M, Raventós J, Escarré A (2002) Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. Journal of Environmental Management 65, 199–208.
Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vjvFKjtA%3D%3D&md5=b0dc8964e093fecd6dea58630a686537CAS |

Bilgili E, Saglam B (2003) Fire behavior in maquis fuels in Turkey. Forest Ecology and Management 184, 201–207.
Fire behavior in maquis fuels in Turkey.Crossref | GoogleScholarGoogle Scholar |

Bradshaw KM (2011) Backfired! Distorted incentives in wildfire suppression techniques. Utah Environmental Law Review 31, 155–179.

Brown AA, Davis KP (1973) ‘Forest Fire – Control and Use’ 2nd edn. pp. 370–373. (McGraw-Hill: New York)

Butler BW, Anderson WR, Catchpole EA (2007) Influence of slope on fire spread rate. In ‘The Fire Environment – Management, and Policy; Conference Proceedings RMRS-P-46CD’ 26–30 March 2007, Destin, FL. (Comps BW Butler, W Cook) pp. 75–82. (USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO)

Byram GM (1959) Combustion of forest fuels. In ‘Forest Fire: Control and Use’. (Ed. KP Davis) pp. 61–80. (McGraw-Hill: New York)

Castellnou M, Kraus D, Miralles M, Delogu G (2010) Suppression fire use in learning organizations. In ‘Towards Integrated Fire Management – Outcomes of the European Project Fire Paradox’. (Eds JS Silva, F Rego, P Fernandes, E Rigolot) pp. 189–201. (European Forest Institute: Joensuu, Finland)

Catchpole WR, Catchpole EA, Butler BW, Rothermel RC, Morris GA, Latham DJ (1998) Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combustion Science and Technology 131, 1–37.
Rate of spread of free-burning fires in woody fuels in a wind tunnel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1Ggsbo%3D&md5=1e13eaee5570d07b104d5a4fc0866d17CAS |

Chandler C, Cheney P, Thomas P, Trabaud L (1983) ‘Fire in Forestry. Vols I and II.’ pp. 137–138. (John Wiley & Sons: New York)

Cheney NP, Gould JS, Catchpole WR (1993) The influence of fuel, weather and fire-shape variables on fire spread in grasslands. International Journal of Wildland Fire 3, 31–44.
The influence of fuel, weather and fire-shape variables on fire spread in grasslands.Crossref | GoogleScholarGoogle Scholar |

Cui W, Qiao Q (2002) Experimental studies of interactions between backfires and coming surface fires. Forestry Studies in China 4, 25–28.

Davies GM, Legg CJ, Smith A, MacDonald A (2009) Rate of spread of fires in Calluna vulgaris-dominated moorlands. Journal of Applied Ecology 46, 1054–1063.
Rate of spread of fires in Calluna vulgaris-dominated moorlands.Crossref | GoogleScholarGoogle Scholar |

Davis KP (1959) ‘Forest Fire: Control and Use.’ pp. 498–502. (McGraw-Hill: New York)

De Luis M, Baeza MJ, Raventós J, González-Hidalgo JC (2004) Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands. International Journal of Wildland Fire 13, 79–87.
Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands.Crossref | GoogleScholarGoogle Scholar |

Dupuy JL, Linn RR, Konovalov V, Pimont F, Vega JA, Jimenez E (2011a) Exploring three-dimensional coupled fire–atmosphere interactions downwind of wind-driven surface fires and their influence on backfiring using the HIGRAD-FIRETEC model. International Journal of Wildland Fire 20, 734–750.
Exploring three-dimensional coupled fire–atmosphere interactions downwind of wind-driven surface fires and their influence on backfiring using the HIGRAD-FIRETEC model.Crossref | GoogleScholarGoogle Scholar |

Dupuy JL, Maréchal J, Portier D, Valette JC (2011b) The effects of slope and fuel bed width on laboratory fire behaviour. International Journal of Wildland Fire 20, 272–288.
The effects of slope and fuel bed width on laboratory fire behaviour.Crossref | GoogleScholarGoogle Scholar |

Fernandes PAM (2001) Fire spread prediction in shrubs fuels in Portugal. Forest Ecology and Management 144, 67–74.
Fire spread prediction in shrubs fuels in Portugal.Crossref | GoogleScholarGoogle Scholar |

Fernandes PM, Catchpole WR, Rego FC (2000) Shrubland fire behaviour modeling with microplot data. Canadian Journal of Forest Research 30, 889–899.
Shrubland fire behaviour modeling with microplot data.Crossref | GoogleScholarGoogle Scholar |

Fernandes PM, Botelho HS, Rego FC, Loureiro C (2009) Empirical modelling of surface fire behaviour in maritime pine stands. International Journal of Wildland Fire 18, 698–710.
Empirical modelling of surface fire behaviour in maritime pine stands.Crossref | GoogleScholarGoogle Scholar |

Finney MA, McAllister SS (2011) A review of fire interactions and mass fires. Journal of Combustion 2011, p. 1

Gaylor HP (1974) ‘Wildfires: Prevention and Control.’ (Ed. MD Bowie) pp. 211–220. (RJ Brady Co.: MD, USA)

Gould JS, Cheney NP, McCaw L (2001) Project Vesta – Research into the effects of fuel structure and fuel load on behaviour of moderate- to high-intensity fires in dry eucalypt forest: Progress Report. In ‘Australasian Bushfire Conference Proceedings’. 3–6 July 2001, Christchurch, New Zealand. (Eds G Pearce, L Lester) pp. 13–21. (New Zealand Forest Research Institute: Rotorua)

Hardin JW, Hilbe JM (2003) ‘Generalized Estimating Equations.’ (Chapman & Hall/CRC: London)

Hodgson A (1968) Control burning in eucalypt forests in Victoria, Australia. Journal of Forestry 66, 601–605.

Luke RH, McArthur AG (1986) ‘Bushfires in Australia.’ pp. 208–211. (Wilke and Company Ltd: Melbourne)

Macías F, Calvo R (2001) ‘Atlas de Galicia: los Suelos.’ (Xunta de Galicia, Consellería de Presidencia: Santiago de Compostela, Spain)

Marsden-Smedley JB, Catchpole WR (1995) Fire behaviour modelling in Tasmanian buttongrass moorlands. II. Fire behaviour. International Journal of Wildland Fire 5, 215–228.
Fire behaviour modelling in Tasmanian buttongrass moorlands. II. Fire behaviour.Crossref | GoogleScholarGoogle Scholar |

Martínez E (2009) Métodos de extinción. El combate. Plan y métodos de extinción. In ‘La Defensa contra Incendios Forestales: Fundamentos y Experiencias’. 2nd edn. (Ed. R Vélez) pp. 744–750. (McGraw-Hill: Madrid)

Martínez E, Aguirre F (1997) ‘Manual del Contrafuego: el Manejo del Fuego en la Extinción de Incendios Forestales.’ (TRAGSA: Madrid, Spain)

McAlpine RS, Wakimoto RW (1991) The acceleration of fire from a point source to equilibrium spread. Forest Science 37, 1314–1337.

McArthur AG (1967) Fire behaviour in eucalypt forests. Commonwealth of Australia, Forestry and Timber Bureau Leaflet 107, Canberra, ACT.

Ministerio de Medio Ambiente (2002) Los incendios forestales en España. Decenio 1991–2000. Dirección General de Conservación de la Naturaleza (DGCN), Madrid, España.

Miralles M, Kraus D, Molina D, Loureiro C, Delogu G, Ribet N, Vilalta O (2010) Overview of suppression fire policies and practices in Europe. In ‘Towards Integrated Fire Management – Outcomes of the European Project Fire Paradox’. (Eds JS Silva, F Rego, P Fernandes, E Rigolot) pp. 203–215. (European Forest Institute: Joensuu, Finland)

Montiel C, Costa P, Gal´a´ M (2010) Overview of suppression fire policies and practices in Europe. In ‘Towards Integrated Fire Management – Outcomes of the European Project Fire Paradox’. (Eds JS Silva, F Rego, P Fernandes, E Rigolot) pp. 177–187. (European Forest Institute)

Morvan D, Hofman C, Rego F, Mell W (2009) Numerical simulation of the interaction between two fire fronts in the context of suppression fire operations. In ‘8th Symposium on Fire and Forest Meteorology’. 13–15 October 2009, Kalispell, MT. (American Meteorological Society: Kalispell, MT)

Murphy PJ (1963) Rates of fire spread in an artificial fuel. MSc thesis, Montana State University, Bozeman, MT, USA.

NWCG (2011) Glossary of wildland fire terminology. National Wildfire Coordinating Group. PMS 205.

Pan W (2001) Akaike's information criterion in generalized estimation equations. Biometrics 57, 120–125.
Akaike's information criterion in generalized estimation equations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzmvVaqtg%3D%3D&md5=533318e2051f8557eee3783f45d8720dCAS |

Perry DG (1990) ‘Wildland Firefighting: Fire Behavior, Tactics and Command.’ 2nd edn. (Fire Publications, Inc.: Bellflower, CA)

Pimont F, Dupuy JL, Linn RR, Dupont S (2009) Validation of FIRETEC wind-flows over a canopy and a fuel-break. International Journal of Wildland Fire 18, 775–790.
Validation of FIRETEC wind-flows over a canopy and a fuel-break.Crossref | GoogleScholarGoogle Scholar |

Pitts WM (1991) Wind effects on fires. Progress in Energy and Combustion Science 17, 83–134.
Wind effects on fires.Crossref | GoogleScholarGoogle Scholar |

Pyne SJ (1984) ‘Introduction to Wildland Fires: Management in the United States.’ pp. 359–361. (Wiley and Interscience Publications: New York)

Pyne S, Andrews PL, Laven RD (1996) ‘Introduction to Wildland Fire.’ (John Wiley & Sons, Inc.: New York)

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-RP-115. (Ogden, UT)

Roxburgh R, Rein G (2008) Study of wildfire in-draft flows for counter-fire operations. In ‘Modelling, Monitoring and Management of Forest Fires’ (Eds J de las Heras, CA Brebbia, D Viegas, V Leone) pp. 13–22. (WIT Press: Southampton, UK)

SPSS (2007) ‘SPSS Base 16.0 User's Guide.’ (SPSS Inc.: Chicago, IL)

Sullivan AL, Knight IK (2001) Estimating error in wind speed measurements for experimental fires. Canadian Journal of Forest Research 31, 401–409.
Estimating error in wind speed measurements for experimental fires.Crossref | GoogleScholarGoogle Scholar |

Teie WC (1994) ‘Firefighter's Handbook on Wildland Firefighting.’ pp. 53, 195–220. (Deer Valley Press: Rescue, CA)

Van Wagner CE (1968) Fire behaviour mechanisms in a red pine plantation: field and laboratory evidence. Canadian Department of Forestry and Rural Development, Forestry Branch Publication No. 1229. (Ottawa, ON)

Vega JA (2001) ‘Manual de Queimas Prescritas para Matogueiras de Galicia.’(Xunta de Galicia: Santiago de Compostela, Spain)

Vega JA, Cuiñas P, Fonturbel T, Pérez-Gorostiaga P, Fern´ndez C (1998) Predicting fire behaviour in Galician (NW Spain) shrubland fuel complexes. In ‘Proceedings of the Third International Conference on Forest Fire Research/14th Fire and Forest Meteorology Conference’. Luso, Portugal, 16–20 November 1998. (Ed. DX Viegas) pp. 713–728. (Associação para o Desenvolvimento da Arodinaˆmica Industrial, University of Coimbra: Coimbra, Portugal)

Vega JA, Cuiñas P, Fonturbel T, Pe´rez-Gorostiaga P, Ferna´ndez C (2000) Primer modelo de prediiicio´n de comportamiento del fuego en matorrales de Galicia. In ‘La Defensa contra Incendios Forestales: Fundamentos y Experiencias’. (Ed. R Vélez) pp. 9.11–9.20. (McGraw-Hill: Madrid)

Vega JA, Pérez-Gorostiaga P, Cuiñas P, Fonturbel MT Ferna´ndez C (2001) ‘Manual de Queimas Prescritas para Matogueiras de Galicia.’ (Xunta de Galicia: Santiago de Compostela, Spain)

Vega JA, Fernandes P, Cuiñas P, Fonturbel T, Pe´rez JR, Loureirio C (2006) Fire spread analysis of early summer field experiments in shrubland fuel types of north-western Iberia. In ‘Proceedings of the Fourth International Conference on Forest Fire Research’. Figueira da Foz. (Ed. DX Viegas) pp. 10. (Elsevier: Amsterdam)

Vega JA, Ferna´ndez C, Jiménez E, Ruiz AD (2009) Evidencias de cambio climatico en Galicia a través das tendencias dos índices de perigo de incendios forestales. In ‘Evidencias e Impacto do Cambio Clima´tico en Galicia’. pp 173–194. (Xunta de Galicia: Santiago de Compostela, Spain)

Weise DR (1993) Modelling wind- and slope-induced wildland fire behaviour. PhD dissertation, University of California at Berkeley, CA.

Weise DR, Biging GS (1997) A qualitative comparison of fire spread models incorporating wind and slope effects. Forest Science 43, 170–180.