Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004)

P. de Zea Bermudez A , J. Mendes B , J. M. C. Pereira C , K. F. Turkman A E and M. J. P. Vasconcelos D
+ Author Affiliations
- Author Affiliations

A Departamento de Estatística e Investigação Operacional (DEIO) and Centro de Estatística e Aplicações da Universidade de Lisboa (CEAUL), University of Lisbon, PT-1749-016 Lisbon, Portugal.

B Instituto Superior de Estatística e Gestão de Informação (ISEGI), New University of Lisbon, PT-1070-124 Lisbon, Portugal.

C Deparment of Forestry and Center for Forest Studies, Instituto Superior de Agronomia (ISA), Technical University of Lisbon, PT-1349-017 Lisbon, Portugal.

D Tropical Research Institute, PT-1300-344 Lisbon, Portugal.

E Corresponding author. Email: kfturkman@fc.ul.pt

International Journal of Wildland Fire 18(8) 983-991 https://doi.org/10.1071/WF07044
Submitted: 27 February 2007  Accepted: 8 April 2009   Published: 9 December 2009

Abstract

Spatial and temporal patterns of large fire (>100 ha) incidence in Portugal over the period 1984–2004 were modeled using extreme value statistics, namely the Peaks Over Threshold approach, which uses the Generalized Pareto Distribution (GPD) as a model. The original dataset includes all fires larger than 5 ha (30 616 fires) that were observed in Portugal during the study period, mapped from Landsat satellite imagery. The country was divided into eight regions, considered internally homogeneous from the perspective of their fire regimes and respective environmental correlates. The temporal analysis showed that there does not appear to be any trend in the incidence of very large fires, but revealed a cyclical behavior in the values of the GPD shape parameter, with a period in the range of 3 to 5 years. Spatial analysis highlighted strong regional differences in the incidence of large fires, and allowed the calculation of return levels for a range of fire sizes. This analysis was affected by the presence of a few outlying observations, which may correspond to clusters of contiguous fire scars, resulting in artificially large burned areas. We discuss some of the implications of our findings in terms of consequences for fire management aimed at preventing the occurrence of extremely large fires, and present ideas for extending the present study.

Additional keywords: Generalized Pareto Distribution, Peaks Over Threshold method.


Acknowledgements

This work is partially supported by Fundação para a Ciência e para a Tecnologia, POCTI and Research project PTDC/MAT/64353/2006. We thank two anonymous referees and the associate editor for their careful reading of the manuscript and for their suggestions.


References


Adamowski K, Liang GC , Patry GG (1998) Annual maxima and partial duration flood series analysis by parametric and non-parametric methods. Hydrological Processes  12, 1685–1699.
Crossref | GoogleScholarGoogle Scholar | Albuquerque JPM (1985) ‘Carta das Regiões Naturais de Portugal.’ (Instituto do Ambiente: Lisbon) Available at http://www.apambiente.pt/atlas/est/ [Verified 25 November 2009]

Alvarado E, Sandberg DV , Pickford SG (1998) Modeling large forest fires as extreme events. Northwest Science  72, 66–75.
Beirlant J, Goegebeurg Y, Segers J, Teugels J (2004) ‘Statistics of Extremes – Theory and Applications.’ (Wiley: Chichester, UK)

Beverly JL , Martell DL (2005) Characterizing extreme fire and weather events in the Boreal Shield ecozone of Ontario. Agricultural and Forest Meteorology  133, 5–16.
Crossref | GoogleScholarGoogle Scholar | Coles S (2001) ‘An Introduction to Statistical Modeling of Extreme Values.’ (Springer-Verlag: London)

Crimmins MA (2006) Synoptic climatology of extreme fire weather conditions across the south-west United States. International Journal of Climatology  26, 1001–1016.
Crossref | GoogleScholarGoogle Scholar | de Zea Bermudez P, Kotz S (2006) Parameter estimation of the Generalized Pareto Distribution. Centro de Estatística e Aplicações da Universidade de Lisboa, Technical Report 6. (Lisbon, Portugal)

DGF (2001) ‘Inventário Florestal Nacional: Portugal Continental, 3 Revisão.’ (Direcção-Geral das Florestas: Lisbon)

Díaz-Delgado R, Lloret F , Pons X (2004a) Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landscape Ecology  19, 731–745.
Crossref | GoogleScholarGoogle Scholar | Embrechts P, Kluppelberg C, Mikosch T (1997) ‘Modeling Extremal Events.’ (Springer-Verlag: Berlin)

Fernandes PM , Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire  12, 117–128.
Crossref | GoogleScholarGoogle Scholar | Oliveira SLJ (2008) Análise da frequência do fogo em Portugal Continental (1975–2005), com a distribuição de Weibull. MSc Thesis, Instituto Superior de Agronomia, Lisbon.

Pena A, Cabral J (1996) ‘Roteiros da Natureza. Temas e Debates.’ (Edição Temas e Debates: Lisbon, Portugal)

Pereira JMC, Santos TN (2003) ‘Fire Risk and Burned Area Mapping in Portugal.’ (Direcção-Geral das Florestas: Lisbon, Portugal)

Pereira MG, Trigo RM, da Camara CC, Pereira JMC , Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology  129, 11–25.
Crossref | GoogleScholarGoogle Scholar | Pereira JMC, Carreiras JMB, Silva JMN, Vasconcelos MJP (2006) Alguns conceitos básicos sobre os fogos rurais em Portugal. In ‘Incêndios Florestais em Portugal: Caracterização, Impactes e Prevenção’. (Eds JS Pereira, JMC Pereira, F Rego, JMN Silva, TP Silva) pp. 133–162. (ISAPress: Lisbon, Portugal)

Pereira JMC, Mota BWC, Sá ACL, Barros AMG, Oliveira SLJ (2008) Detecção remota da resposta da vegetação em áreas queimadas em 2003. In ‘Incêndios Florestais: 5 Anos após 2003’. (Eds JS Silva, E de Deus, L Saldanha) pp. 111–124. (Liga para a Protecção da Natureza e Autoridade Florestal Nacional: Lisbon, Portugal)

Pickands J (1975) Statistical inference using extreme order statistics. Annals of Statistics  3, 119–131.
Crossref | GoogleScholarGoogle Scholar | Pyne SJ, Andrews PL, Laven RD (1996) ‘Introduction to Wildland Fire.’ 2nd edn. (Wiley: New York)

Ramesh NI (2005) Semi-parametric analysis of extreme forest fires. Forest Biometry Modelling and Information Sciences 1, 1–10. Available at http://cms1.gre.ac.uk/conferences/iufro/fbmis/A/5_1_RameshNI_1.pdf [Verified 25 November 2009]

Rodrigo A, Retana J , Pic FX (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology  85(3), 716–729.
Crossref | GoogleScholarGoogle Scholar | Simões SM (2007) Expansão ao Alentejo e Algarve da curva de acumulação pós-fogo para a biomassa arbustiva. Agriculture Degree, Graduation report, Universidade Técnica de Lisbon.

Strauss D, Bednar L , Mees R (1989) Do one percent of the fires cause ninety-nine percent of the damage? Forest Science  35, 319–328.
Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service, Petawawa National Forestry Institute, Forestry Technical Report 35. (Ottawa, ON)