Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Nitrogen mineralisation in soil after addition of wine distillery waste compost: laboratory and field evaluation

M. I. Requejo A C , M. C. Cartagena B , R. Villena B , L. Giraldo B , A. Arce B , F. Ribas A , M. J. Cabello A and M. T. Castellanos B
+ Author Affiliations
- Author Affiliations

A Centro de Investigación Agroambiental “El Chaparrillo”, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha, Ctra. Toledo-Albacete s/n, 13700, Tomelloso, Ciudad Real, Spain.

B Dpto. Química y Tecnología de los Alimentos, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain.

C Corresponding author. Email: maria.requejo.mariscal@gmail.com

Soil Research 54(2) 144-153 https://doi.org/10.1071/SR15031
Submitted: 3 February 2015  Accepted: 17 June 2015   Published: 5 March 2016

Abstract

The application of wastes from the wine-distillery industry as source of organic matter and nutrients could be a good option of agricultural management. This study is focused on soil nitrogen (N) mineralisation after addition of compost derived from this industry at different doses (7, 13 and 20 t ha–1). An aerobic soil incubation in controlled conditions was carried out to study N mineralisation from the soil-compost mixture as well as isolating the compost from the soil. The data were fitted to a non-linear regression obtaining low values of potentially mineralisable N (N0) and constants of mineralisation (k) (from 81 to 104 mg kg–1 and from 0.008 to 0.013 L day–1 for the soil-compost mixtures, and from 42 to 71 mg kg–1 and from 0.009 to 0.015 L day–1 for the increasing doses of compost) which indicates that it is a mature compost very resistant to mineralisation. Nitrogen mineralised (NM) in the field during two growing seasons (2011 and 2012) of a melon crop was calculated through a N balance, taking into account N inputs and outputs in the soil-plant system. NM in the unamended plots accounted to 31 kg ha–1 and 24 kg ha–1 in 2011 and 2012, respectively, and increased proportionally to the dose of compost applied until 113 kg ha–1 and 98 kg/ha in the consecutive years. The constants of mineralisation obtained in the laboratory were adjusted by field temperatures to predict NM in the field and a general overestimation was observed. The best estimates were obtained when considering the mixture of soil and compost, which reflects the important role of the soil to evaluate N mineralisation caused by the addition of organic wastes.


References

Allen RG, Pereira LS, Raes D, Smith M (2002) ‘Crop evapotranspiration: guidelines for computing crop water requirements.’ Irrigation and Drainage Paper No. 56. 3rd edn. (FAO: Rome)

Arvanitoyannis IS, Ladas D, Mavromatis A (2006) Potential uses and applications of treated wine waste: a review. International Journal of Food Science & Technology 41, 475–487.
Potential uses and applications of treated wine waste: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVCntr0%3D&md5=2f6fabd42118e7450e7730c68bcf119fCAS |

Association of Official Analytical Chemists (AOAC) (1990) ‘Official methods of analysis.’ (Ed. K Helrich) (AOAC: Arlington, VA)

Ayers RS, Westcott DW (1987) ‘Water quality for agriculture.’ Irrigation and Drainage Paper No. 29. (FAO: Rome)

Bar-Tal A, Yermiyahu U, Beraud J, Keinan M, Rosenberg R, Zohar D, Rosen V, Fine P (2004) Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications. Journal of Environmental Quality 33, 1855–1865.
Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVehs7Y%3D&md5=2336dfd9a31e976c5b7d45cf7e675481CAS | 15356247PubMed |

Bernal M, Sanchez-Monedero M, Paredes C, Roig A (1998) Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agriculture, Ecosystems & Environment 69, 175–189.
Carbon mineralization from organic wastes at different composting stages during their incubation with soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVentL4%3D&md5=d37eaaaa259e4b665bdf309bb750068aCAS |

Borrero C, Trillas MI, Ordovás J, Tello JC, Avilés M (2004) Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology 94, 1094–1101.
Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media.Crossref | GoogleScholarGoogle Scholar | 18943798PubMed |

Bremner J (1965) Inorganic forms of nitrogen. In ‘Methods of soil analysis. Part 2. Chemical and microbiological properties’. (Ed. CA Black) pp. 1179–1237. (American Society of Agronomy: Madison, WI)

Brinton W, York A (2003) Sustainable composting in the vineyard. Part I: basics of the process. Practical Winery and Vineyard 25, 16–27.

Bustamante M, Pérez-Murcia M, Paredes C, Moral R, Pérez-Espinosa A, Moreno-Caselles J (2007) Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes. Bioresource Technology 98, 3269–3277.
Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Gqsb8%3D&md5=d1c076d0bdad435cdd928bec18fe8a8dCAS | 16919937PubMed |

Bustamante M, Moral R, Paredes C, Pérez-Espinosa A, Moreno-Caselles J, Pérez-Murcia M (2008) Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Management 28, 372–380.
Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyns73K&md5=631bb4f82ca66ffc8c06fdfaf22aec52CAS | 17433659PubMed |

Bustamante M, Said-Pullicino D, Paredes C, Cecilia J, Moral R (2010) Influences of winery–distillery waste compost stability and soil type on soil carbon dynamics in amended soils. Waste Management 30, 1966–1975.
Influences of winery–distillery waste compost stability and soil type on soil carbon dynamics in amended soils.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjpvF2rtA%3D%3D&md5=9df01495a7df82d88d37696e84e9b9e1CAS | 20382012PubMed |

Bustamante M, Said-Pullicino D, Agulló E, Andreu J, Paredes C, Moral R (2011) Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: effects on the characteristics of a calcareous sandy-loam soil. Agriculture, Ecosystems & Environment 140, 80–87.
Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: effects on the characteristics of a calcareous sandy-loam soil.Crossref | GoogleScholarGoogle Scholar |

Cabrera M, Kissel D (1988) Evaluation of a method to predict nitrogen mineralized from soil organic matter under field conditions. Soil Science Society of America Journal 52, 1027–1031.
Evaluation of a method to predict nitrogen mineralized from soil organic matter under field conditions.Crossref | GoogleScholarGoogle Scholar |

Cabrera F, Martín-Olmedo P, Lopez R, Murillo JM (2005) Nitrogen mineralization in soils amended with composted olive mill sludge. Nutrient Cycling in Agroecosystems 71, 249–258.
Nitrogen mineralization in soils amended with composted olive mill sludge.Crossref | GoogleScholarGoogle Scholar |

Cassman K, Munns D (1980) Nitrogen mineralization as affected by soil moisture, temperature, and depth. Soil Science Society of America Journal 44, 1233–1237.
Nitrogen mineralization as affected by soil moisture, temperature, and depth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmsVehtg%3D%3D&md5=694a9f79a4369e2788d45fd847e0378cCAS |

Castellanos MT, Cabello MJ, Cartagena MC, Tarquis A, Arce A, Ribas F (2012) Nitrogen uptake dynamics, yield and quality as influenced by nitrogen fertilization in ‘Piel de sapo’ melon. Spanish Journal of Agricultural Research 10, 756–767.
Nitrogen uptake dynamics, yield and quality as influenced by nitrogen fertilization in ‘Piel de sapo’ melon.Crossref | GoogleScholarGoogle Scholar |

Castellanos MT, Tarquis A, Ribas F, Cabello M, Arce A, Cartagena M (2013) Nitrogen fertigation: an integrated agronomic and environmental study. Agricultural Water Management 120, 46–55.
Nitrogen fertigation: an integrated agronomic and environmental study.Crossref | GoogleScholarGoogle Scholar |

Chadwick D, John F, Pain B, Chambers B, Williams J (2000) Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment. The Journal of Agricultural Science 134, 159–168.
Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment.Crossref | GoogleScholarGoogle Scholar |

Chae Y, Tabatabai M (1986) Mineralization of nitrogen in soils amended with organic wastes. Journal of Environmental Quality 15, 193–198.
Mineralization of nitrogen in soils amended with organic wastes.Crossref | GoogleScholarGoogle Scholar |

Cordovil CMdS, Coutinho J, Goss M, Cabral F (2005) Potentially mineralizable nitrogen from organic materials applied to a sandy soil: fitting the one‐pool exponential model. Soil Use and Management 21, 65–72.
Potentially mineralizable nitrogen from organic materials applied to a sandy soil: fitting the one‐pool exponential model.Crossref | GoogleScholarGoogle Scholar |

Cordovil CMdS, Cabral F, Coutinho J (2007) Potential mineralization of nitrogen from organic wastes to ryegrass and wheat crops. Bioresource Technology 98, 3265–3268.
Potential mineralization of nitrogen from organic wastes to ryegrass and wheat crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Gqsb4%3D&md5=4fe8f74ac5975632a1f53a7da3ecc558CAS |

De Neve S, Hofman G (1998) N mineralization and nitrate leaching from vegetable crop residues under field conditions: a model evaluation. Soil Biology & Biochemistry 30, 2067–2075.
N mineralization and nitrate leaching from vegetable crop residues under field conditions: a model evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsleisLk%3D&md5=e1a268bcab7da8ff858d24d0d7c9d39fCAS |

Delphin J (2000) Estimation of nitrogen mineralization in the field from an incubation test and from soil analysis. Agronomie 20, 349–361.
Estimation of nitrogen mineralization in the field from an incubation test and from soil analysis.Crossref | GoogleScholarGoogle Scholar |

Diánez F, Santos M, Tello JC (2007) Suppressive effects of grape marc compost on phytopathogenic oomycetes. Archives of Phytopathology and Plant Protection 40, 1–18.
Suppressive effects of grape marc compost on phytopathogenic oomycetes.Crossref | GoogleScholarGoogle Scholar |

Doorenbos J, Pruitt WO (1977) ‘Crop water requirements.’ Irrigation and Drainage Paper no. 24. (FAO: Rome)

Fangueiro D, De Sousa G, Vasconcelos E, Duarte E (2012) Influence of nitrogen content in the soil solution on potential nitrogen mineralization of organic residues. Archives of Agronomy and Soil Science 58, S112–S115.
Influence of nitrogen content in the soil solution on potential nitrogen mineralization of organic residues.Crossref | GoogleScholarGoogle Scholar |

Ferrer J, Páez G, Mármol Z, Ramones E, Chandler C, Marın M, Ferrer A (2001) Agronomic use of biotechnologically processed grape wastes. Bioresource Technology 76, 39–44.
Agronomic use of biotechnologically processed grape wastes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslyltrk%3D&md5=656553c70b539d62b67cba4775a3cc15CAS | 11315808PubMed |

Flavel T, Murphy D, Lalor B, Fillery I (2005) Gross N mineralization rates after application of composted grape marc to soil. Soil Biology & Biochemistry 37, 1397–1400.
Gross N mineralization rates after application of composted grape marc to soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlWjur8%3D&md5=2741bbf9f3bae22890664236c2892582CAS |

Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews of the Cambridge Philosophical Society 63, 433–462.
The effect of added nitrogen on the rate of decomposition of organic matter.Crossref | GoogleScholarGoogle Scholar |

Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry 35, 837–843.
The priming effect of organic matter: a question of microbial competition?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFCqtro%3D&md5=8fa60fd2b7837bd5cf195cdbafe7e49cCAS |

FAO (2012) FAOSTAT database. Available at: http://faostat.fao.org/site/636/DesktopDefault.aspx?PageID=636#ancor (accessed 24 January 2015).

Gianello C, Bremner J (1986) Comparison of chemical methods of assessing potentially available organic nitrogen in soil 1. Communications in Soil Science and Plant Analysis 17, 215–236.
Comparison of chemical methods of assessing potentially available organic nitrogen in soil 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVOlu7g%3D&md5=55c0f632be45d28e256da478bf528cd9CAS |

Gil M, Carballo M, Calvo L (2011) Modelling N mineralization from bovine manure and sewage sludge composts. Bioresource Technology 102, 863–871.
Modelling N mineralization from bovine manure and sewage sludge composts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlersw%3D%3D&md5=b99b6590305fa3f8cca24f6536c9eb8dCAS | 20951032PubMed |

Hernández T, Moral R, Perez-Espinosa A, Moreno-Caselles J, Perez-Murcia M, Garcia C (2002) Nitrogen mineralisation potential in calcareous soils amended with sewage sludge. Bioresource Technology 83, 213–219.
Nitrogen mineralisation potential in calcareous soils amended with sewage sludge.Crossref | GoogleScholarGoogle Scholar | 12094796PubMed |

Huang X, Xue D, Xue L (2014) Effect of sludge compost on soil N mineralization and microbial community of tree peony. In ‘Biotechnology, agriculture, environment and energy: Proceedings of the 2014 International Conference on Biotechnology, Agriculture, Environment and Energy (ICBAEE 2014)’. 22–23 May 2014, Beijing, China. (Ed. F Zheng) p. 83–87. (CRC Press)

Iglesias-Jimenez E, Alvarez C (1993) Apparent availability of nitrogen in composted municipal refuse. Biology and Fertility of Soils 16, 313–318.
Apparent availability of nitrogen in composted municipal refuse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVegtLc%3D&md5=0bf6ab15569e9a7768dc79e08fb230cdCAS |

Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends in Ecology & Evolution 12, 139–143.
Competition for nitrogen between plants and soil microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFKgtg%3D%3D&md5=245e2913051d357adf533239b7316eaeCAS |

Lasaridi K, Stentiford E, Evans T (2000) Windrow composting of wastewater biosolids: process performance and product stability assessment. Water Science and Technology 42, 217–226.

Leifeld J, Siebert S, Kögel‐Knabner I (2002) Biological activity and organic matter mineralization of soils amended with biowaste composts. Journal of Plant Nutrition and Soil Science 165, 151–159.
Biological activity and organic matter mineralization of soils amended with biowaste composts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1ehtLs%3D&md5=2bdca8bcb818cbff66d98b247bb125cbCAS |

Lindemann W, Cardenas M (1984) Nitrogen mineralization potential and nitrogen transformations of sludge-amended soil. Soil Science Society of America Journal 48, 1072–1077.
Nitrogen mineralization potential and nitrogen transformations of sludge-amended soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmt12hsLw%3D&md5=42ca8ba826fba3f28d808feeda11e891CAS |

MAGRAMA (2012) ‘Anuario de estadística 2012.’ Available at: www.magrama.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2013/default.aspx?parte=3&capitulo=13&grupo=11&seccion=3 (verified 24 January 2015).

Mantovani JR, Ferreira ME, da Cruz MCP, Barbosa JC, Freria AC (2006) Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em Argissolo. Revista Brasileira de Ciencia do Solo 30, 677–684.
Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em Argissolo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGmsw%3D%3D&md5=db25ef403a41af28313caad2edc574f5CAS |

Masoni A, Mariotti M, Ercoli L (2000) Distribuzione dei fanghi di cantina al mais. Produzione granellare, assorbimento e lisciviazione dell’azoto e del fosforo. Rivista di Agronomia 34, 234–245.

Mikha MM, Rice CW, Benjamin JG (2006) Estimating soil mineralizable nitrogen under different management practices. Soil Science Society of America Journal 70, 1522–1531.
Estimating soil mineralizable nitrogen under different management practices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpsl2ls7s%3D&md5=970873744da8e23260aea2d02acd54bfCAS |

Montemurro F, Ferri D, Tittarelli F, Canali S, Vitti C (2010) Anaerobic digestate and on-farm compost application: effects on lettuce (Lactuca sativa L.) crop production and soil properties. Compost Science & Utilization 18, 184–193.
Anaerobic digestate and on-farm compost application: effects on lettuce (Lactuca sativa L.) crop production and soil properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yqtL%2FF&md5=e9be9ddbb4c90ac82a135033e818a91eCAS |

Mosetti D, Bigot G, Mondini C, Sinicco T, Fornasier F (2010) Nutrizione azotata della vite: risultati preliminari dell’applicazione di fertilizzanti organici. Rivista di Viticoltura e di Enologia 63, 141–148.

Odlare M, Arthurson V, Pell M, Svensson K, Nehrenheim E, Abubaker J (2011) Land application of organic waste: effects on the soil ecosystem. Applied Energy 88, 2210–2218.
Land application of organic waste: effects on the soil ecosystem.Crossref | GoogleScholarGoogle Scholar |

Paradelo R, Moldes AB, Barral MT (2011) Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost. Waste Management & Research 29, 1177–1184.
Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost.Crossref | GoogleScholarGoogle Scholar |

Pascual J, Hernandez T, Garcia C, Garcia A (1998) Changes in the organic matter mineralization rates of an arid soil after amendment with organic wastes. Arid Land Research and Management 12, 63–72.

Requejo MI, Cartagena MC, Villena R, Arce A, Ribas F, Cabello MJ, Castellanos MT (2014) Wine-distillery waste compost addition to a drip-irrigated horticultural crop of central Spain: risk assessment. Biosystems Engineering 128, 11–20.
Wine-distillery waste compost addition to a drip-irrigated horticultural crop of central Spain: risk assessment.Crossref | GoogleScholarGoogle Scholar |

Ribas F, Cabello MJ, Moreno M (1995) ‘Necesidades de riego del melón y respuesta del cultivo a riegos diferenciales en la provincia de Ciudad Real (Castilla-La Mancha).’ XIII Jornadas Técnicas Sobre Riegos 12–20. Tenerife.

Rincón L, Giménez M (1989) Fertirrigación por goteo del melón. Fertilización 105, 55–56.

Sánchez-Martín L, Arce A, Benito A, Garcia-Torres L, Vallejo A (2008) Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology & Biochemistry 40, 1698–1706.
Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop.Crossref | GoogleScholarGoogle Scholar |

Segarra G, Casanova E, Borrero C, Avilés M, Trillas I (2007) The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. European Journal of Plant Pathology 117, 393–402.
The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants.Crossref | GoogleScholarGoogle Scholar |

Serna M, Pomares F (1992a) Indexes of assessing N availability in sewage sludges. Plant and Soil 139, 15–21.
Indexes of assessing N availability in sewage sludges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Omu78%3D&md5=8646aac1f3008d3b193bb737c14f878eCAS |

Serna M, Pomares F (1992b) Nitrogen mineralization of sludge-amended soil. Bioresource Technology 39, 285–290.
Nitrogen mineralization of sludge-amended soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFSltL4%3D&md5=9efdae44003d7e30a35ba17ccdc0273fCAS |

Sistani K, Adeli A, McGowen S, Tewolde H, Brink G (2008) Laboratory and field evaluation of broiler litter nitrogen mineralization. Bioresource Technology 99, 2603–2611.
Laboratory and field evaluation of broiler litter nitrogen mineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFyjt7s%3D&md5=f8657c87ec9ec4877bca63294a7b493eCAS | 17604161PubMed |

Soil Survey Staff (2010) ‘Keys to soil taxonomy.’ 11th edn. USDA–Natural Resources Conservation Service. (US Government Printing Office: Washington, DC)

Stanford G, Smith S (1972) Nitrogen mineralization potentials of soils. Soil Science Society of America Journal 36, 465–472.
Nitrogen mineralization potentials of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XktlegtLw%3D&md5=08c3be2b6399669e2ded5f2af6658354CAS |

Stanford G, Frere M, Schwaninger D (1973) Temperature coefficient of soil nitrogen mineralization. Soil Science 115, 321–323.
Temperature coefficient of soil nitrogen mineralization.Crossref | GoogleScholarGoogle Scholar |

Stanford G, Carter J, Smith S (1974) Estimates of potentially mineralizable soil nitrogen based on short-term incubations. Soil Science Society of America Journal 38, 99–102.
Estimates of potentially mineralizable soil nitrogen based on short-term incubations.Crossref | GoogleScholarGoogle Scholar |

Zarabi M, Jalali M (2013) Nitrogen mineralization in two calcareous soils treated with raw organic amendments. Clean Technologies and Environmental Policy 15, 317–331.
Nitrogen mineralization in two calcareous soils treated with raw organic amendments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFajtL8%3D&md5=e536512bae37459c62442e1873bc1eebCAS |

Zinati GM, Christenson DR, Harris D (2007) Estimation of field N mineralization from laboratory incubation for sugar beet production in Michigan. Communications in Soil Science and Plant Analysis 38, 827–842.
Estimation of field N mineralization from laboratory incubation for sugar beet production in Michigan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFCgu70%3D&md5=aa6c646aac9f343967ad6cd7d1f35b9aCAS |