Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Gypsum form and rate can affect soil physicochemical properties and crop productivity in soils of low electrical conductivity that have been enriched by sodium due to supplementary irrigation

Walter D. Carciochi https://orcid.org/0000-0003-4239-4354 A B * , Justo Chevallier Boutell A , Gisela V. García A B , Natalia V. Diovisalvi C , Nicolas Wyngaard A B , Adrián Lapaz Olveira A B and Nahuel I. Reussi Calvo A B C *
+ Author Affiliations
- Author Affiliations

A Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina.

C Lab. de suelos FERTILAB, Moreno 4524, Mar del Plata, Buenos Aires, Argentina.


Handling Editor: Somasundaram Jayaraman

Soil Research 62, SR24050 https://doi.org/10.1071/SR24050
Submitted: 29 March 2024  Accepted: 16 August 2024  Published: 13 September 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

The optimum gypsum form and rate required to ameliorate soil sodicity constraints caused by supplementary irrigation with water containing sodium bicarbonate in humid regions are unknown.

Aim

Evaluate the short-term effect of different gypsum forms and rates on (i) soil physicochemical properties and (ii) grain yield in a barley (Hordeum vulgare L.)/maize (Zea mays L.) sequence.

Methods

We conducted two field experiments in the southeastern Argentinean Pampas on soils with low electrical conductivity (0.2 dS m−1), assessing three forms of gypsum (granulated, pelletised, and powdered) applied a month before barley sowing at 2000 kg ha−1. In one experiment, 3000 kg ha−1 was also tested. Soil properties and grain yield were determined at barley and maize harvests (i.e. 7 and 13 months after the gypsum application, respectively).

Key results

(i) Gypsum did not significantly affect soil physical properties; (ii) powdered gypsum at 3000 kg ha−1 enhanced soil chemical properties at barley harvest, decreasing pH by 7% and exchangeable sodium percentage by 35%, while increasing the exchangeable Ca2+/Na+ ratio by 70% (0.0–0.1 m depth); (iii) powdered gypsum improved soil chemical conditions at deeper soil depths (0.1–0.2 m) at maize harvest; (iv) barley grain yield increased with gypsum application; and (v) maize yield was negatively correlated with soil pH and positively correlated with the Ca2+/Na+ ratio.

Conclusions

Powdered gypsum can rapidly improve soil chemical properties and increase crop yields.

Implications

Powdered gypsum, especially at 3000 kg ha−1, could be used to alleviate soil sodicity issues in the short-term.

Keywords: Argentinean Pampas, granule, humid regions, irrigation, Mollisols, no-till, pellet, powder.

References

Abdel-Fattah MK, Fouda S, Schmidhalter U (2015) Effects of gypsum particle size on reclaiming saline-sodic soils in Egypt. Communications in Soil Science and Plant Analysis 46, 1112-1122.
| Crossref | Google Scholar |

Agostini MLÁ, Monterubbianesi MG, Studdert GA, Maurette S (2014) Un método simple y práctico para la determinación de densidad aparente. Ciencia del suelo 32, 171-176.
| Google Scholar |

Alvarez CR, Rimski Korsakov H, Torres Duggan M (2020) Effects of supplementary irrigation on soils and crops in humid and sub-humid areas in the Pampas Region of Argentina. In ‘Saline and alkaline soils in latin america’. (Eds E Taleisnik, RS Lavado) pp. 285–294. (Springer: Cham) doi:10.1007/978-3-030-52592-7_15

Amezketa E, Aragúés R, Gazol R (2005) Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agronomy Journal 97, 983-989.
| Crossref | Google Scholar |

Amgain NR, Xu N, Rabbany A, Fan Y, Bhadha JH (2022) Developing soil health scoring indices based on a comprehensive database under different land management practices in Florida. Agrosystems, Geosciences & Environment 5(3), e20304.
| Crossref | Google Scholar |

Angelini HP, Costa JL, Aparicio VC (2022) Expansion of irrigation, soil type, slope and water quality in the southeast of the province of Buenos Aires. Revista de la Facultad de Agronomía 121, 1-14.
| Crossref | Google Scholar |

Bolan NS, Syers JK, Sumner ME (1991) Dissolution of various sources of gypsum in aqueous solutions and in soil. Journal of the Science of Food and Agriculture 57, 527-541.
| Crossref | Google Scholar |

Chawla KL, Abrol IP (1982) Effect of gypsum fineness on the reclamation of sodic soils. Agricultural Water Management 5, 41-50.
| Crossref | Google Scholar |

Costa JL (1999) Effect of irrigation water quality under supplementary irrigation on soil chemical and physical properties in the “Southern Humid Pampas” of Argentina. Journal of Crop Production 2, 85-99.
| Crossref | Google Scholar |

Costa JL, Aparicio VC (2015) Quality assessment of irrigation water under a combination of rain and irrigation. Agricultural Water Management 159, 299-306.
| Crossref | Google Scholar |

Costa JL, Aparicio VC, Sallesses LF, Frolla FD (2016) Effect of tillage and application of gypsum in a no-till field under supplementary irrigation with sodium bicarbonate waters. Agricultural Water Management 177, 291-297.
| Crossref | Google Scholar |

Dang YP, Page KL, Dalal RC, Menzies NW (2020) No-till farming systems for sustainable agriculture: an overview. In ‘No-till farming systems for sustainable agriculture’. (Eds Y Dang, R Dalal, N Menzies) pp. 3–20. (Springer International Publishing: Cham). doi:10.1007/978-3-030-46409-7_1

García GV, Tourn SN, Roldán MF, Mandiola M, Studdert GA (2020) Simplifying the determination of aggregate stability indicators of mollisols. Communications in Soil Science and Plant Analysis 51, 481-490.
| Crossref | Google Scholar |

Haby VA, Russelle MP, Skogley EO (1990) Testing soils for potassium, calcium, and magnesium. In ‘Soil testing and plant analysis’. (Ed. RL Westerman) pp. 181–227. (John Wiley & Sons, Ltd) doi:10.2136/sssabookser3.3ed.c8

Hodson ME, Donner E (2013) Managing adverse soil chemical environments. In ‘Soil conditions and plant growth’, 1st edn. (Eds PJ Gregory, S Nortcliff) pp. 195–237. (Wiley). doi:10.1002/9781118337295.ch7

Hulugalle NR, Finlay LA (2003) EC1:5/exchangeable Na, a sodicity index for cotton farming systems in irrigated and rainfed Vertosols. Soil Research 41(4), 761.
| Crossref | Google Scholar |

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrif 15, 259-263.
| Crossref | Google Scholar |

Kukal MS, Irmak S (2019) Irrigation-limited yield gaps: Trends and variability in the united states post-1950. Environmental Research Communications 1, 061005.
| Crossref | Google Scholar |

Lebron I, Suarez DL, Yoshida T (2002) Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Science Society of America Journal 98, 92-98.
| Crossref | Google Scholar |

Mon R, Irurtia C, Botta G, Pozzolo O, Bellora F, Rivero D, Bomben M (2007) Effects of supplementary irrigation on chemical and physical soil properties in the rolling pampa region of Argentina. Ciencia e Investigacion Agraria 34, 143-150.
| Crossref | Google Scholar |

Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490, 254-257.
| Crossref | Google Scholar | PubMed |

Murtaza B, Murtaza G, Sabir M, Owens G, Imran M, Shah GM (2017) Amelioration of saline–sodic soil with gypsum can increase yield and nitrogen use efficiency in rice–wheat cropping system. Archives of Agronomy and Soil Science 63, 1267-1280.
| Crossref | Google Scholar |

Osman KT (2018) Saline and sodic soils. In ‘Management of soil problems’. (Ed. KT Osman) pp. 255–298. (Springer International Publishing). doi:10.1007/978-3-319-75527-4_10

Oster JD (1982) Gypsum usage in irrigated agriculture: a review. Fertilizer Research 3, 73-89.
| Crossref | Google Scholar |

Oster JD, Jayawardane NS (1998) Agricultural management of sodic soils. In ‘Sodic soils’. (Eds ME Sumner, R Naidu) pp. 125–147. (Oxford University Press: New York)

Pilatti MA, Imhoff S, Ghiberto P, Marano RP (2006) Changes in some physical properties of Mollisols induced by supplemental irrigation. Geoderma 133, 431-443.
| Crossref | Google Scholar |

Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy 96, 197-247.
| Crossref | Google Scholar |

R Core Team (2023) R: A language and environment for statistical computing, Vienna, Austria. Available at https://www.R-project.org/

Rasouli F, Kiani Pouya A, Karimian N (2013) Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma 193–194, 246-255.
| Crossref | Google Scholar |

Rengasamy P, Marchuk A (2011) Cation ratio of soil structural stability (CROSS). Soil Research 49(3), 280.
| Crossref | Google Scholar |

Rengasamy P, Olsson KA (1991) Sodicity and soil structure. Australian Journal of Soil Research 29, 935-952.
| Crossref | Google Scholar |

Rengasamy P, Tavakkoli E, McDonald GK (2016) Exchangeable cations and clay dispersion: net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science 67(5), 659-665.
| Crossref | Google Scholar |

ReTAA (2023) Prácticas ambientales en la producción agrícola Argentina 2021/22. #65. Buenos Aires, Argentina. Available at https://www.bolsadecereales.com/imagenes/retaa/2023-02/250-retaamensualn%C2%BA65-practicasambientales21.22.pdf

Rhoades JD (1983a) Cation exchange capacity. In ‘Methods of soil analysis: Part 2 chemical and microbiological properties’. (Ed. AL Page) pp. 149–157. (ASA, CSSA, SSSA) doi:10.2134/agronmonogr9.2.2ed.c8

Rhoades JD (1983b) Soluble salts. In ‘Methods of soil analysis: Part 2 chemical and microbiological properties’. (Ed. AL Page) pp. 167–179. (ASA, CSSA, SSSA) doi:10.2134/agronmonogr9.2.2ed.c10

Rubio G, Lavado RS, Pereyra FX (2019) ‘The soils of Argentina.’ (Springer International Publishing: New York, USA)

Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79, 7-31.
| Crossref | Google Scholar |

Sparks DL (2003) The chemistry of saline and sodic soils. In ‘Environmental soil chemistry’. (Ed. DL Sparks) pp. 285–300. (Elsevier) doi:10.1016/B978-012656446-4/50010-4

Sumner ME (1993) Sodic soils – new perspectives. Australian Journal of Soil Research 31, 683-750.
| Crossref | Google Scholar |

Thomas GW (1996) Soil pH and soil acidity, In ‘Methods of soil analysis: Part 3 Chemical Methods’. SSSA Book Series 5 (Ed. DL Sparks, AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Sumner) pp. 475–490. (SSSA: Madison, WI)

Torres Duggan M, Rodríguez MB (2021) Conceptual and practical framework to address gypsum management in salt-affected soils. In ‘Saline and alkaline soils in latin america’. (Eds E Taleisnik, RS Lavado) pp. 295–309. (Springer: Cham) doi:10.1007/978-3-030-52592-7_16

Torres Duggan M, Álvarez CR, Taboada MA, Celesti T, Vignarolli F, D’ambrosio D (2012) Riego complementario en un argiudol típico de la pampa ondulada Argentina bajo siembra directa: Efectos sobre algunas propiedades químicas y físicas del suelo. Ciencia del suelo 30, 201-207.
| Google Scholar |

USDA (1999) ‘Soil quality test kit guide.’ (USDA-Natural Resources Conservation Service: Washington, DC)

USDA (2014) ‘Keys to soil taxonomy,’ 12th edn. (Soil Conservation Service. USDA-Natural Resources Conservation Service: Washington, DC)

van den Elshou S, Kamphorst A (1990) Suitability of coarse-grade gypsum for socid soil reclamation: a laboratory experiment. Soil Science 149(4), 228-234.
| Google Scholar |

Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29-38.
| Crossref | Google Scholar |