Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soil carbon, organic matter fractions, and soil physical quality under different sugarcane harvesting systems in north-east Brazil

Handerson Brandão Melo de Lima https://orcid.org/0000-0002-1322-8026 A * , Sávio Tavares Ferreira Borges A , Crislâny Canuto dos Santos https://orcid.org/0000-0001-5772-5123 A and Stoécio Malta Ferreira Maia https://orcid.org/0000-0001-6491-2517 A B
+ Author Affiliations
- Author Affiliations

A Campus of Engineering and Agrarian Sciences, Federal University of Alagoas (CECA/UFAL), Rio Largo, Alagoas, Brazil.

B Federal Institute of Education, Science and Technology of Alagoas (IFAL) – Campus Marechal, Marechal Deodoro, Alagoas, Brazil.

* Correspondence to: handersonbml@gmail.com

Handling Editor: Mark Farrell

Soil Research 63, SR24152 https://doi.org/10.1071/SR24152
Submitted: 5 September 2024  Accepted: 12 December 2024  Published: 3 January 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Sugarcane cultivation is one of the main agricultural activities in Brazil. Among the production systems, unburnt harvesting has gained prominence and has been replacing the burning system. The use of unburnt harvesting system increases straw retention on soil surface, which influences the quantity and quality of soil organic matter (SOM).

Aims

We evaluated the effects of burnt and unburnt sugarcane harvesting systems on soil organic carbon (SOC) stocks and SOM dynamics in the north-east region of Brazil.

Methods

The study was conducted at three sites, each containing one area of burnt sugarcane harvesting system (Bs), two areas of unburnt sugarcane harvesting systems (Us) and one area of native vegetation (NV), totaling 12 collection sites.

Key results

The results show that the conversion of NV to sugarcane cultivation areas led to SOC loss, which ranged from 7% to 62%, and reduced soil quality due to losses of particulate organic matter (POM) and increased soil bulk density (BD), being corroborated by changes in other indicators, such as soil degree of compactness (SDC), and reduction in the soil structural stability index (SSI).

Conclusions

Despite the losses when compared to NV, the Us system showed increments in SOC, POM-C, and SSI and reductions in BD and SDC compared to Bs.

Implications

The findings of this study highlight the importance of understanding the impact of land use change on the properties of SOM.

Keywords: climate changes, land use effects on soil, soil organic carbon, soil organic matter, soil structure, sugarcane, tropical soils, unburnt harvesting.

References

Barros DRS, Medeiros AdS, Araújo JEQ, Moura AB, Maia SMF (2021) Effect of sugarcane harvesting systems on soil organic matter in northeastern region of Brazil. Communications in Soil Science and Plant Analysis 52(14), 1657-1668.
| Crossref | Google Scholar |

Bayer C, Martin-Neto L, Mielniczuk J, Pillon CN, Sangoi L (2001) Changes in soil organic matter fractions under subtropical no-till cropping systems. Soil Science Society of America Journal 65(5), 1473-1478.
| Crossref | Google Scholar |

Besen M, Ribeiro R, Rigo A, Iwasaki G, Piva J (2018) Conservation practices of only the emission of gases from stoves in Brazil. Scientia Agropecuaria 9(3), 429-439.
| Crossref | Google Scholar |

Blair N (2000) Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia. Soil and Tillage Research 55(3–4), 183-191.
| Crossref | Google Scholar |

Blair GJ, Chapman L, Whitbread AM, Ball-Coelho B, Larsen P, Tiessen H (1998) Soil carbon changes resulting from sugarcane trash management at two locations in Queensland, Australia, and in North-East Brazil. Australian Journal of Soil Research 36(6), 873-882.
| Crossref | Google Scholar |

Braida JA, Reichert JM, Veiga Md, Reinert DJ (2006) Resíduos vegetais na superfície e carbono orgânico do solo e suas relações com a densidade máxima obtida no ensaio proctor. Revista Brasileira de Ciência do Solo 30(4), 605-614.
| Crossref | Google Scholar |

Braunbeck OA, Oliveira JTA (2006) Colheita de cana-de-açúcar com auxílio mecânico. Engenharia Agrícola 26, 300-308.
| Crossref | Google Scholar |

Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56(3), 777-783.
| Crossref | Google Scholar |

Carvalho JLN, Hudiburg TW, Franco HCJ, DeLucia EH (2017) Contribution of above- and belowground bioenergy crop residues to soil carbon. GCB Bioenergy 9(8), 1333-1343.
| Crossref | Google Scholar |

Cavalcanti RQ, Rolim MM, de Lima RP, Tavares UE, Pedrosa EMR, Cherubin MR (2020) Soil physical changes induced by sugarcane cultivation in the Atlantic Forest biome, northeastern Brazil. Geoderma 370, 114353.
| Crossref | Google Scholar |

Cerri CC, Galdos MV, Maia SMF, Bernoux MM, Feigl BJ, Powlson D, Cerri CEP (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science 62(1), 23-28.
| Crossref | Google Scholar |

Cherubin MR, Karlen DL, Franco ALC, Tormena CA, Cerri CEP, Davies CA, Cerri CC (2016) Soil physical quality response to sugarcane expansion in Brazil. Geoderma 267, 156-168.
| Crossref | Google Scholar |

Fontana A, Silva CFd, Pereira MG, Loss A, Brito RJd, Benites VDM (2011) Avaliação dos compartimentos da matéria orgânica em área de Mata Atlântica. Acta Scientiarum. Agronomy 33(3), 545-550.
| Crossref | Google Scholar |

Fracetto FJC, Fracetto GGM, Cerri CC, Feigl BJ, Siqueira Neto M (2012) Estoques de carbono e nitrogênio no solo cultivado com mamona na Caatinga. Revista Brasileira de Ciência do Solo 36(5), 1545-1552.
| Crossref | Google Scholar |

Franco ALC, Cherubin MR, Pavinato PS, Cerri CEP, Six J, Davies CA, Cerri CC (2015) Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Science of The Total Environment 515–516, 30-38.
| Crossref | Google Scholar |

Galdos MV, Cerri CC, Cerri CEP (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153(3–4), 347-352.
| Crossref | Google Scholar |

Gomes CE, Couglan HO, Cardoso S, Pereira OE, Juarez BOF, Gomes L, Marco S, Garcia A, Chaves M, Gama MMH, Gontijo EC, Arthur F, Lima S, Santos R, Tarsis S, De Oliveira PR, Barros SF, Mara R, Neves R, Valnier A, Santos AA, Augusto A, Cidon P, Vinícius A, Salgado P, De AR, Rodrigues A, Leone OHB, Castro SB, Dias BE, Oliveira C, Erig C (2022) Cana-de-açúcar: acompanhamento da safra brasileira 2022/2023. National Supply Company, Special Publication No. 2, Brasília.

Graham MH, Haynes RJ, Meyer JH (2002) Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biology and Biochemistry 34(1), 93-102.
| Crossref | Google Scholar |

He M, Xiong X, Wang L, Hou D, Bolan NS, Ok YS, Rinklebe J, Tsang DCW (2021) A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials 414, 125378.
| Crossref | Google Scholar | PubMed |

Junior PRDR, Soares ML, Ribeiro IG, Da Costa ASV, Donagemma GK, Mendonça EDS (2014) Soil carbon stock in silvopastoral system, pasture and sugarcaneculture. Idesia (Arica) 32(1), 35-42.
| Crossref | Google Scholar |

Kunde RJ, Lima CLRd, Silva SDdAe, Pillon CN (2018) Tensile strength, friability, aggregation, and soil organic matter physical fractions of an Oxisol cultivated with sugarcane. Pesquisa Agropecuária Brasileira 53(4), 487-494.
| Crossref | Google Scholar |

Lavallee JM, Soong JL, Cotrufo MF (2020) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology 26(1), 261-273.
| Crossref | Google Scholar | PubMed |

Lima Neto JdA, Ribeiro MR, Corrêa MM, Souza Júnior VSd, Lima JFWF, Ferreira RFdAeL (2009) Caracterização e gênese do caráter coeso em latossolos amarelos e argissolos dos tabuleiros costeiros do estado de Alagoas. Revista Brasileira de Ciência do Solo 33, 1001-1011.
| Crossref | Google Scholar |

Locatelli JL, Santos RS, Cherubin MR, Cerri CEP (2022) Changes in soil organic matter fractions induced by cropland and pasture expansion in Brazil’s new agricultural frontier. Geoderma Regional 28, e00474.
| Crossref | Google Scholar |

Luca EFde, Feller C, Cerri CC, Barthès B, Chaplot V, Campos DC, Manechini C (2008) Avaliação de atributos físicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial. Revista Brasileira de Ciência do Solo 32(2), 789-800.
| Crossref | Google Scholar |

Luca EF, Chaplot V, Mutema M, Feller C, Ferreira ML, Cerri CC, Couto HTZ (2018) Effect of conversion from sugarcane preharvest burning to residues green-trashing on SOC stocks and soil fertility status: results from different soil conditions in Brazil. Geoderma 310, 238-248.
| Crossref | Google Scholar |

Marcolin CD, Klein VA (2011) Determinação da densidade relativa do solo por uma função de pedotransferência para a densidade do solo máxima. Acta Scientiarum. Agronomy 33(2), 349-354.
| Crossref | Google Scholar |

Medeiros AdS, Silva TSd, Silva AVLd, Barros DRS, Maia SMF (2018) Organic carbon, nitrogen and the stability of soil aggregates in areas converted from sugar cane to eucalyptus in the state of alagoas. Revista Árvore 42(4), e420404.
| Crossref | Google Scholar |

Mello FFC, Cerri CEP, Davies CA, Holbrook NM, Paustian K, Maia SMF, Galdos MV, Bernoux M, Cerri CC (2014) Payback time for soil carbon and sugar-cane ethanol. Nature Climate Change 4, 605-609.
| Crossref | Google Scholar |

Mendonça EdS, Matos EdS (2017) ‘Matéria orgânica do solo: métodos de análises.’ (UFV-Gefert: Viçosa)

Moitinho MR, Ferraudo AS, Panosso AR, Bicalho EdaS, Teixeira DDB, Barbosa MdA, Tsai SM, Borges BMF, Cannavan FdS, Souza JAMde, La Scala N (2021) Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes. CATENA 196, 104903.
| Crossref | Google Scholar |

Otto R, Silva AP, Franco HCJ, Oliveira ECA, Trivelin PCO (2011) High soil penetration resistance reduces sugarcane root system development. Soil and Tillage Research 117, 201-210.
| Crossref | Google Scholar |

Pieri CJMG (1992) ‘Fertility of soils: a future for farming in the West African Savannah.’ (Springer Science & Business Media)

Portela MGT, Leite LFC, Barbosa RP (2021) Microbiological attributes of a cultivated Plinthosol with sugarcane on different levels of straw. Acta Agronómica 69(4), 306-313.
| Crossref | Google Scholar |

R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Razafimbelo T, Barthès B, Larré-Larrouy M-C, Luca EFD, Laurent J-Y, Cerri CC, Feller C (2006) Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. Agriculture, Ecosystems & Environment 115(1–4), 285-289.
| Crossref | Google Scholar |

Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I (2009) Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research 102(2), 242-254.
| Crossref | Google Scholar |

Rosset JS, Schiavo JA, Atanázio RAR (2014) Atributos químicos, estoque de carbono orgânico total e das frações humificadas da matéria orgânica do solo em diferentes sistemas de manejo de cana-de-açúcar. Semina: Ciências Agrárias 35(5), 2351-2366.
| Crossref | Google Scholar |

Rosset JS, Schiavo JA, Panachuki E, Salton JC, Ozório JMB, Souza CBdS, Farias PGdS (2022) Influence of the form of harvesting and waste application on the carbon management index and soil aggregation under sugarcane cultivation. Revista de agricultura neotropical 8(4), e6744.
| Crossref | Google Scholar |

Saiani CCS, Perosa BB (2016) Saúde respiratória e mecanização da colheita da cana-de-açúcar nos municípios paulistas: a importância do protocolo agroambiental. Revista de Economia e Sociologia Rural 54(1), 29-50.
| Crossref | Google Scholar |

Santos GAd, Dias Junior MdS, Guimarães PTG, Furtini Neto AE (2005) Diferentes graus de compactação e fornecimento de fósforo influenciando no crescimento de plantas de milho (Zea mays L.) cultivadas em solos distintos. Ciência e Agrotecnologia 29(4), 740-752.
| Crossref | Google Scholar |

Sattolo TMS, Mariano E, Boschiero BN, Otto R (2017) Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agriculture, Ecosystems & Environment 247, 63-74.
| Crossref | Google Scholar |

Signor D, Czycza RV, Milori DMBP, Cunha TJF, Cerri eCEP (2016) Atributos químicos e qualidade da matéria orgânica do solo em sistemas de colheita de cana-de-açúcar com e sem queima. Pesquisa Agropecuária Brasileira 51(9), 1438-1448.
| Crossref | Google Scholar |

Silva AJN, Ribeiro MR, Carvalho FG, Silva VN, Silva LESF (2007) Impact of sugarcane cultivation on soil carbon fractions, consistence limits and aggregate stability of a Yellow Latosol in Northeast Brazil. Soil and Tillage Research 94(2), 420-424.
| Crossref | Google Scholar |

Sisti CPJ, dos Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research 76(1), 39-58.
| Crossref | Google Scholar |

Skjemstad JO, Dalal RC, Barron PF (1986) Spectroscopic investigations of cultivation effects on organic matter of vertisols. Soil Science Society of America Journal 50(2), 354-359.
| Crossref | Google Scholar |

Skjemstad JO, Swift RS, McGowan JA (2006) Comparison of the particulate organic carbon and permanganate oxidation methods for estimating labile soil organic carbon. Australian Journal of Soil Research 44(3), 255-263.
| Crossref | Google Scholar |

Soane BD (1990) The role of organic matter in soil compactibility: a review of some practical aspects. Soil and Tillage Research 16(1–2), 179-201.
| Crossref | Google Scholar |

Soares VASF, Frazão LA, Pegoraro RF, Sampaio RA, Fernandes LA (2022) Irrigated sugarcane cultivation improves soil organic carbon quality over time. Semina: Agricultural Sciences 43(1), 283-296.
| Crossref | Google Scholar |

Souza ZMd, Prado RdM, Paixão ACS, Cesarin eLG (2005) Sistemas de colheita e manejo da palhada de cana-de-açúcar. Pesquisa Agropecuária Brasileira 40(3), 271-278.
| Crossref | Google Scholar |

Souza EDd, Carneiro MAC, Paulino HB, Silva CA, Buzetti S (2006) Frações do carbono orgânico, biomassa e atividade microbiana em um Latossolo Vermelho sob cerrado submetido a diferentes sistemas de manejos e usos do solo. Acta Scientiarum. Agronomy 28(3), 323 329.
| Crossref | Google Scholar |

Souza GSd, Souza ZMd, Silva RBd, Barbosa RS, Araújo FS (2014) Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo 38(1), 135-146.
| Crossref | Google Scholar |

Souza GSd, Souza ZMd, Cooper M, Tormena CA (2015) Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation. Scientia Agricola 72, 270-277.
| Crossref | Google Scholar |

Tavares RLM, Oliveira SRdM, Barros FMMd, Farhate CVV, Souza ZMd, Scala Junior NL (2018) Prediction of soil CO2 flux in sugarcane management systems using the random forest approach. Scientia Agricola 75(4), 281-287.
| Crossref | Google Scholar |

Tiwari S, Singh C, Boudh S, Rai PK, Gupta VK, Singh JS (2019) Land use change: a key ecological disturbance declines soil microbial biomass in dry tropical uplands. Journal of Environmental Management 242, 1-10.
| Crossref | Google Scholar | PubMed |

Vitti AC, Trivelin PCO, Cantarella H, Franco HCJ, Faroni CE, Otto R, Trivelin MO, Tovajar JG (2008) Mineralização da palhada e crescimento de raízes de cana-de-açúcar relacionados com a adubação nitrogenada de plantio. Revista Brasileira de Ciência do Solo 32, 2757-2762.
| Crossref | Google Scholar |

Weiler DA, Moro VJ, Awe GO, Oliveira DMdS, Cerri CEP, Reichert JM, Giacomini SJ (2019) Carbon balance in sugarcane areas under different tillage systems. BioEnergy Research 12, 778-788.
| Crossref | Google Scholar |

Wendling B, Jucksch I, Mendonça EdS, Vinhal-Freitas IC (2011) Mudanças no carbono e nitrogênio em diferentes compartimentos da matéria orgânica sob sistema agrossilvipastoril. Ciência Florestal 21(4), 641-653.
| Crossref | Google Scholar |

Zani CF, Barneze AS, Robertson AD, Keith AM, Cerri CEP, McNamara NP, Cerri CC (2018) Vinasse application and cessation of burning in sugarcane management can have positive impact on soil carbon stocks. PeerJ 6, e5398.
| Crossref | Google Scholar | PubMed |

Zotarelli L, Alves BJR, Urquiaga S, Boddey RM, Six J (2007) Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols. Soil and Tillage Research 95(1–2), 196-206.
| Crossref | Google Scholar |