Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
REVIEW (Open Access)

New treatment options for Neisseria gonorrhoeae in the era of emerging antimicrobial resistance

David A. Lewis
+ Author Affiliations
- Author Affiliations

A Western Sydney Sexual Health Centre, Western Sydney Local Health District, 162 Marsden Street, Parramatta, NSW 2150, Australia.

B Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, City Road, Camperdown, NSW 2006, Australia.

C Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Hawkesbury Road, Westmead, NSW 2145, Australia.

D Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7935, South Africa.

E Email: david.lewis2@sydney.edu.au

Sexual Health 16(5) 449-456 https://doi.org/10.1071/SH19034
Submitted: 18 February 2019  Accepted: 16 April 2019   Published: 11 July 2019

Journal Compilation © CSIRO 2019 Open Access CC BY-NC-ND

Abstract

Neisseria gonorrhoeae, the causative agent of gonorrhoea, has rapidly evolved from an exquisitely susceptible pathogen into a ‘superbug’ with the capacity to exhibit an extensively drug resistant (XDR) phenotype. The threat of untreatable gonorrhoea now looms on the horizon while the arsenal of effective antimicrobial agents diminishes with time. Ceftriaxone remains the mainstay of first-line therapy as a single agent or as the backbone of a dual therapy regimen. The implementation of new assays to facilitate ‘precision’ treatment, based on the prediction of N. gonorrhoeae susceptibility to old anti-gonococcal drugs, may enable sparing use of ceftriaxone in those countries that can afford this technology. A few existing drugs, such as ertapenem, can be repositioned to help manage multi-drug resistant and XDR gonorrhoea. Recent clinical trials involving solithromycin and delafloxacin have generated disappointing results in that both agents failed to show non-inferiority to conventional ceftriaxone-based regimens. At present, zoliflodacin and gepotidacin appear to be the most promising antimicrobial agents in clinical development. Both drugs performed well in eradicating urogenital gonorrhoea in recent Phase 2 trials; however, treatment failures were reported at the oropharyngeal site, which is an important site of infection in men who have sex with men and sex workers. Given this observation, it is unlikely that either of these new agents could be promoted for monotherapy of gonorrhoea. The pre-clinical pipeline remains relatively empty of agents likely to progress to clinical development for gonorrhoea treatment and increased investment into gonorrhoea-specific drug discovery is recommended.

Additional keywords: gonorrhoea, multi-drug resistance, new therapies.


References

[1]  Lewis DA. Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis 2014; 27 62–7.
Global resistance of Neisseria gonorrhoeae: when theory becomes reality.Crossref | GoogleScholarGoogle Scholar | 24275696PubMed |

[2]  Van Slyke CJ, Arnold RC, Buchholtz M. Penicillin therapy in sulfonamide-resistant gonorrhea in men. Am J Public Health Nations Health 1943; 33 1392–4.
Penicillin therapy in sulfonamide-resistant gonorrhea in men.Crossref | GoogleScholarGoogle Scholar | 18015911PubMed |

[3]  Lewis DA. The gonococcus fights back: is this time a knock out? Sex Transm Infect 2010; 86 415–21.
The gonococcus fights back: is this time a knock out?Crossref | GoogleScholarGoogle Scholar | 20656721PubMed |

[4]  European Centre for Disease Prevention and Control. Rapid risk assessment: extensively drug-resistant (XDR) Neisseria gonorrhoeae in the United Kingdom and Australia. Stockholm: ECDC; 2018. Available online at: https://ecdc.europa.eu/sites/portal/files/documents/RRA-Gonorrhoea%2C%20Antimicrobial%20resistance-United%20Kingdom%2C%20Australia.pdf [verified 18 May 2019].

[5]  Tapsall JW, Ndowa F, Lewis DA, Unemo M. Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther 2009; 7 821–34.
Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 19735224PubMed |

[6]  World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: WHO; 2017. Available online at: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf [verified 18 May 2019].

[7]  Goire N, Lahra MM, Chen M, Donovan B, Fairley CK, Guy R, Kaldor J, Regan D, Ward J, Nissen MD, Sloots TP, Whiley DM. Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 2014; 12 223–9.
Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance.Crossref | GoogleScholarGoogle Scholar | 24509781PubMed |

[8]  Kamanga G, Mhango C, Brown L. Viewpoint: gentamicin for treatment of gonococcal urethritis in Malawi. Malawi Med J 2010; 22 63–4.
Viewpoint: gentamicin for treatment of gonococcal urethritis in Malawi.Crossref | GoogleScholarGoogle Scholar | 21977848PubMed |

[9]  Lewis DA. Gonorrhoea resistance among men-who-have-sex-with-men: what’s oral sex got to do with it? S Afr J Epid Infect 2013; 28 77

[10]  Hook EW, Kirkcaldy RD. A brief history of evolving diagnostics and therapy for gonorrhea: lessons learned. Clin Infect Dis 2018; 67 1294–9.
A brief history of evolving diagnostics and therapy for gonorrhea: lessons learned.Crossref | GoogleScholarGoogle Scholar | 29659749PubMed |

[11]  Boslego JW, Tramont EC, Takafuji ET, Diniega BM, Mitchell BS, Small JW, Khan WN, Stein DC. Effect of spectinomycin use on the prevalence of spectinomycin-resistant and of penicillinase-producing Neisseria gonorrhoeae. N Engl J Med 1987; 317 272–8.
Effect of spectinomycin use on the prevalence of spectinomycin-resistant and of penicillinase-producing Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 2955222PubMed |

[12]  Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob Agents Chemother 2010; 54 3812–6.
High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes.Crossref | GoogleScholarGoogle Scholar | 20585125PubMed |

[13]  Ito M, Yasuda M, Yokoi S, Ito S, Takahashi Y, Ishihara S, Maeda S, Deguchi T. Remarkable increase in central Japan in 2001–2002 of Neisseria gonorrhoeae isolates with decreased susceptibility to penicillin, tetracycline, oral cephalosporins, and fluoroquinolones. Antimicrob Agents Chemother 2004; 48 3185–7.
Remarkable increase in central Japan in 2001–2002 of Neisseria gonorrhoeae isolates with decreased susceptibility to penicillin, tetracycline, oral cephalosporins, and fluoroquinolones.Crossref | GoogleScholarGoogle Scholar | 15273147PubMed |

[14]  Lo JY, Ho KM, Leung AO, Tiu FS, Tsang GK, Lo AC, Tapsall JW. Ceftibuten resistance and treatment failure of Neisseria gonorrhoeae infection. Antimicrob Agents Chemother 2008; 52 3564–7.
Ceftibuten resistance and treatment failure of Neisseria gonorrhoeae infection.Crossref | GoogleScholarGoogle Scholar | 18663018PubMed |

[15]  Ito M, Deguchi T, Mizutani KS, Yasuda M, Yokoi S, Ito S, Takahashi Y, Ishihara S, Kawamura Y, Ezaki T. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob Agents Chemother 2005; 49 137–43.
Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan.Crossref | GoogleScholarGoogle Scholar | 15616287PubMed |

[16]  Unemo M, Nicholas RA. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhoea. Future Microbiol 2012; 7 1401–22.
Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhoea.Crossref | GoogleScholarGoogle Scholar | 23231489PubMed |

[17]  Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012; 56 1273–80.
High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure.Crossref | GoogleScholarGoogle Scholar | 22155830PubMed |

[18]  Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama SI, Kitawaki J, Unemo M. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first high-level ceftriaxone resistant strain. Antimicrob Agents Chemother 2011; 55 3538–45.
Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first high-level ceftriaxone resistant strain.Crossref | GoogleScholarGoogle Scholar | 21576437PubMed |

[19]  Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Atlanta: CDC; 2013. Available online at: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf [verified 18 May 2019].

[20]  Centers for Disease Control and Prevention. Cephalosporin-resistant Neisseria gonorrhoeae public health response plan. Atlanta: CDC; 2012. Available online at: http://www.cdc.gov/std/treatment/ceph-r-responseplanjuly30-2012.pdf [verified 18 May 2019].

[21]  World Health Organization. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. Geneva: WHO; 2012. Available online at: http://whqlibdoc.who.int/publications/2012/9789241503501_eng.pdf [verified 18 May 2019].

[22]  European Centre for Disease Control and Prevention. Response plan to control and manage the threat of multidrug-resistant gonorrhoea in Europe. Stockholm: ECDC; 2012. Available online at: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/1206-ECDC-MDR-gonorrhoea-response-plan.pdf [verified 18 May 2019].

[23]  Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D, Unemo M. Failure of dual antimicrobial therapy in treatment of gonorrhea. N Engl J Med 2016; 374 2504–6.
Failure of dual antimicrobial therapy in treatment of gonorrhea.Crossref | GoogleScholarGoogle Scholar | 27332921PubMed |

[24]  Fifer H, Saunders J, Soni S, Sadiq ST, FitzGerald M. British Association for Sexual Health and HIV national guideline for the management of infection with Neisseria gonorrhoeae (2019). London: British Association for Sexual Health and HIV; 2019. Available online at: https://www.bashhguidelines.org/media/1208/gc-2019.pdf [verified 18 May 2019].

[25]  Buono SA, Watson TD, Borenstein LA, Klausner JD, Pandori MW, Godwin HA. Stemming the tide of drug-resistant Neisseria gonorrhoeae: the need for an individualized approach to treatment. J Antimicrob Chemother 2015; 70 374–81.
Stemming the tide of drug-resistant Neisseria gonorrhoeae: the need for an individualized approach to treatment.Crossref | GoogleScholarGoogle Scholar | 25331059PubMed |

[26]  Singh V, Bala M, Bhargava A, Kakran M, Bhatnagar R. In vitro efficacy of 21 dual antimicrobial combinations comprising novel and currently recommended combinations for treatment of drug resistant gonorrhoea in future era. PLoS One 2018; 13 e0193678
In vitro efficacy of 21 dual antimicrobial combinations comprising novel and currently recommended combinations for treatment of drug resistant gonorrhoea in future era.Crossref | GoogleScholarGoogle Scholar | 30566528PubMed |

[27]  Allan-Blitz LT, Humphries RM, Hemarajata P, Bhatti A, Pandori MW, Siedner MJ, Klausner JD. Implementation of a rapid genotypic assay to promote targeted ciprofloxacin therapy of Neisseria gonorrhoeae in a large health system. Clin Infect Dis 2017; 64 1268–70.
| 28034887PubMed |

[28]  Perera SR, Khan NH, Martin I, Taheri A, Parti RP, Levett PN, Horsman GB, Kusalik A, Dillon JR. Multiplex real-time PCR assay for simultaneous identification of Neisseria gonorrhoeae and its ciprofloxacin susceptibility status. J Clin Microbiol 2017; 55 3201–9.
Multiplex real-time PCR assay for simultaneous identification of Neisseria gonorrhoeae and its ciprofloxacin susceptibility status.Crossref | GoogleScholarGoogle Scholar | 28814585PubMed |

[29]  Trembizki E, Guy R, Donovan B, Kaldor JM, Lahra MM, Whiley DM, GRAND study investigators. Further evidence to support the individualised treatment of gonorrhoea with ciprofloxacin. Lancet Infect Dis 2016; 16 1005–6.
Further evidence to support the individualised treatment of gonorrhoea with ciprofloxacin.Crossref | GoogleScholarGoogle Scholar | 27684341PubMed |

[30]  Kirkcaldy RD, Weinstock HS, Moore PC, Philip SS, Wiesenfeld HC, Papp JR, Kerndt PR, Johnson S, Ghanem KG, Hook EW. The efficacy and safety of gentamicin plus azithromycin and gemifloxacin plus azithromycin as treatment of uncomplicated gonorrhea. Clin Infect Dis 2014; 59 1083–91.
The efficacy and safety of gentamicin plus azithromycin and gemifloxacin plus azithromycin as treatment of uncomplicated gonorrhea.Crossref | GoogleScholarGoogle Scholar | 25031289PubMed |

[31]  Brittain C, Childs M, Duley L, Harding J, Hepburn T, Meakin G, Montgomery AA, Tan W, Ross JD. Gentamicin versus ceftriaxone for the treatment of gonorrhoea (G-TOG trial): study protocol for a randomised trial. Trials 2016; 17 558
Gentamicin versus ceftriaxone for the treatment of gonorrhoea (G-TOG trial): study protocol for a randomised trial.Crossref | GoogleScholarGoogle Scholar | 27881151PubMed |

[32]  Ross JDC, Harding J, Duley L, Montgomery AA, Hepburn T, Tan W, Brittain C, Meakin G, Thandi S, Lawrence T, Cole M, Wilson J, White J, Jackson L, Roberts T. The efficacy and safety of gentamicin for the treatment of genital, pharyngeal and rectal gonorrhoea: a randomised controlled trial. Sex Transm Infect 2017; 93 A42–3.

[33]  Zhanel GG, Johanson C, Embil JM, Noreddin A, Gin A, Vercaigne L, Hoban DJ. Ertapenem: review of a new carbapenem. Expert Rev Anti Infect Ther 2005; 3 23–39.
Ertapenem: review of a new carbapenem.Crossref | GoogleScholarGoogle Scholar | 15757455PubMed |

[34]  Unemo M, Golparian D, Limnios A, Whiley D, Ohnishi M, Lahra MM, Tapsall JW. In vitro activity of ertapenem versus ceftriaxone against Neisseria gonorrhoeae isolates with highly diverse ceftriaxone MIC values and effects of ceftriaxone resistance determinants: ertapenem for treatment of gonorrhea? Antimicrob Agents Chemother 2012; 56 3603–9.
In vitro activity of ertapenem versus ceftriaxone against Neisseria gonorrhoeae isolates with highly diverse ceftriaxone MIC values and effects of ceftriaxone resistance determinants: ertapenem for treatment of gonorrhea?Crossref | GoogleScholarGoogle Scholar | 22547617PubMed |

[35]  Livermore DM, Alexander S, Marsden B, James D, Warner M, Rudd E, Fenton K. Activity of ertapenem against Neisseria gonorrhoeae. J Antimicrob Chemother 2004; 54 280–1.
Activity of ertapenem against Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 15175267PubMed |

[36]  Jönsson A, Foerster S, Golparian D, Hamasuna R, Jacobsson S, Lindberg M, Jensen JS, Ohnishi M, Unemo M. In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates. APMIS 2018; 126 29–37.
In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates.Crossref | GoogleScholarGoogle Scholar | 29154480PubMed |

[37]  Hamasuna R, Ohnishi M, Matsumoto M, Okumura R, Unemo M, Matsumoto T. In vitro activity of sitafloxacin and additional newer generation fluoroquinolones against ciprofloxacin-resistant Neisseria gonorrhoeae isolates. Microb Drug Resist 2018; 24 30–4.
In vitro activity of sitafloxacin and additional newer generation fluoroquinolones against ciprofloxacin-resistant Neisseria gonorrhoeae isolates.Crossref | GoogleScholarGoogle Scholar | 28581359PubMed |

[38]  Soge OO, Salipante SJ, No D, Duffy E, Roberts MC. In vitro activity of delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of gonococcal delafloxacin resistance. Antimicrob Agents Chemother 2016; 60 3106–11.
In vitro activity of delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of gonococcal delafloxacin resistance.Crossref | GoogleScholarGoogle Scholar | 26976873PubMed |

[39]  Jorgensen SCJ, Mercuro NJ, Davis SL, Rybak MJ. Delafloxacin: place in therapy and review of microbiologic, clinical and pharmacologic properties. Infect Dis Ther 2018; 7 197–217.
Delafloxacin: place in therapy and review of microbiologic, clinical and pharmacologic properties.Crossref | GoogleScholarGoogle Scholar | 29605887PubMed |

[40]  Hook EW, Golden MR, Taylor SN, Henry E, Tseng C, Swerdlow J, Nenninger A, Cammarata S. Efficacy and safety of single dose oral delafloxacin compared with intramuscular ceftriaxone for uncomplicated gonorrhea treatment: an open-label, non-inferiority, phase 3, multicenter, randomized study. Sex Transm Dis 2019; 46 279–86.
Efficacy and safety of single dose oral delafloxacin compared with intramuscular ceftriaxone for uncomplicated gonorrhea treatment: an open-label, non-inferiority, phase 3, multicenter, randomized study.Crossref | GoogleScholarGoogle Scholar | 30985632PubMed |

[41]  DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 2016; 47 20–33.
Innovation in the pharmaceutical industry: new estimates of R&D costs.Crossref | GoogleScholarGoogle Scholar | 26928437PubMed |

[42]  Alirol E, Wi TE, Bala M, Bazzo ML, Chen XS, Deal C, Dillon JR, Kularatne R, Heim J, Hooft van Huijsduijnen R, Hook EW, Lahra MM, Lewis DA, Ndowa F, Shafer WM, Tayler L, Workowski K, Unemo M, Balasegaram M. Multidrug-resistant gonorrhea: a research and development roadmap to discover new medicines. PLoS Med 2017; 14 e1002366
Multidrug-resistant gonorrhea: a research and development roadmap to discover new medicines.Crossref | GoogleScholarGoogle Scholar | 28746372PubMed |

[43]  Van Bambeke F, Tulkens PM. The role of solithromycin in the management of bacterial community-acquired pneumonia. Expert Rev Anti Infect Ther 2016; 14 311–24.
The role of solithromycin in the management of bacterial community-acquired pneumonia.Crossref | GoogleScholarGoogle Scholar | 26848612PubMed |

[44]  Llano-Sotelo B, Dunkle J, Klepacki D, Zhang W, Fernandes P, Cate JH, Mankin AS. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother 2010; 54 4961–70.
Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis.Crossref | GoogleScholarGoogle Scholar | 20855725PubMed |

[45]  Golparian D, Fernandes P, Ohnishi M, Jensen JS, Unemo M. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: potential treatment option for gonorrhea? Antimicrob Agents Chemother 2012; 56 2739–42.
In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: potential treatment option for gonorrhea?Crossref | GoogleScholarGoogle Scholar | 22354296PubMed |

[46]  Hook EW, Golden M, Jamieson BD, Dixon PB, Harbison HS, Lowens S, Fernandes P. A phase 2 trial of oral solithromycin 1200 mg or 1000 mg as single-dose oral therapy for uncomplicated gonorrhea. Clin Infect Dis 2015; 61 1043–8.
A phase 2 trial of oral solithromycin 1200 mg or 1000 mg as single-dose oral therapy for uncomplicated gonorrhea.Crossref | GoogleScholarGoogle Scholar | 26089222PubMed |

[47]  Oldach D. Results of the SOLITAIRE-U Phase 3 trial: solithromycin vs. ceftriaxone + azithromycin for treatment of uncomplicated urogenital gonorrhea. Chapel Hill: Cempra, Inc.; 2017. Available online at: https://starstictg.s-3.net/sites/default/files/page_files/12.%20Results%20of%20the%20SOLITAIRE-U%20Phase%203%20Trial_Solithromycin_Oldach_4.13.2017.pptx [verified 18 May 2019].

[48]  Cempra Inc. Cempra receives complete response letter from FDA for solithromycin NDAs [press release]. Chapel Hill: Cempra, Inc., December 29, 2016. Available online at: http://ir.melinta.com/news-releases/news-release-details/cempra-receives-complete-response-letter-fda-solithromycin-ndas [verified 18 May 2019].

[49]  O’Donnell J, Lawrence K, Vishwanathan K, Hosagrahara V, Mueller JP. Single-dose pharmacokinetics, excretion, and metabolism of zoliflodacin, a novel spiropyrimidinetrione antibiotic, in healthy volunteers. Antimicrob Agents Chemother 2018; 63 e01808–18.
| 30373802PubMed |

[50]  Basarab GS, Kern GH, McNulty J, Mueller JP, Lawrence K, Vishwanathan K, Alm RA, Barvian K, Doig P, Galullo V, Gardner H, Gowravaram M, Huband M, Kimzey A, Morningstar M, Kutschke A, Lahiri SD, Perros M, Singh R, Schuck VJ, Tommasi R, Walkup G, Newman JV. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep 2015; 5 11827
Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.Crossref | GoogleScholarGoogle Scholar | 26168713PubMed |

[51]  Taylor SN, Marrazzo J, Batteiger BE, Hook EW, Sena AC, Long J, Wierzbicki MR, Kwak H, Johnson SM, Lawrence K, Mueller J. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N Engl J Med 2018; 379 1835–45.
Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea.Crossref | GoogleScholarGoogle Scholar | 30403954PubMed |

[52]  Global Antibiotic Research and Development Partnership/Drugs for Neglected Diseases Initiative. Entasis Therapeutics and the Global Antibiotic Research & Development Partnership (GARDP) to develop a new treatment for drug-resistant gonorrhea [press release]. Boston, Geneva: GARDP/DNDi; July 6, 2017. Available online at: https://www.dndi.org/2017/media-centre/press-releases/entasis-therapeutics-and-gardp-to-develop-new-treatment-for-drug-resistant-gonorrhea [verified 18 May 2019].

[53]  Farrell DJ, Sader HS, Rhomberg PR, Scangarella-Oman NE, Flamm RK. In vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob Agents Chemother 2017; 61 e02047–16
In vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 28483959PubMed |

[54]  Biedenbach DJ, Bouchillon SK, Hackel M, Miller LA, Scangarella-Oman NE, Jakielaszek C, Sahm DF. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 2016; 60 1918–23.
In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens.Crossref | GoogleScholarGoogle Scholar | 26729499PubMed |

[55]  Scangarella-Oman NE, Hossain M, Dixon PB, Ingraham K, Min S, Tiffany CA, Perry CR, Raychaudhuri A, Dumont EF, Huang J, Hook EW, Miller LA. Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae. Antimicrob Agents Chemother 2018; 62 e01221–18
Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 30249694PubMed |

[56]  Jacobsson S, Golparian D, Scangarella-Oman N, Unemo M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J Antimicrob Chemother 2018; 73 2072–7.
In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 29796611PubMed |

[57]  O’Riordan W, Tiffany C, Scangarella-Oman N, Perry C, Hossain M, Ashton T, Dumont E. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2017; 61 e02095–16
Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections.Crossref | GoogleScholarGoogle Scholar | 28373199PubMed |

[58]  Taylor SN, Morris DH, Avery AK, Workowski KA, Batteiger BE, Tiffany CA, Perry CR, Raychaudhuri A, Scangarella-Oman NE, Hossain M, Dumont EF. Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin Infect Dis 2018; 67 504–12.
Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a phase 2, randomized, dose-ranging, single-oral dose evaluation.Crossref | GoogleScholarGoogle Scholar | 29617982PubMed |

[59]  Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2014; 27 587–613.
Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.Crossref | GoogleScholarGoogle Scholar | 24982323PubMed |