Register      Login
Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
RESEARCH ARTICLE

Analysis of transmitted HIV drug resistance from 2005 to 2015 in Victoria, Australia: a comparison of the old and the new

Jodie D’Costa A B , Megan Gooey A , Nicole Richards A , Rizmina Sameer A , Elaine Lee A and Doris Chibo A
+ Author Affiliations
- Author Affiliations

A Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Locked Bag 815, Carlton South, Vic. 3053, Australia.

B Corresponding author. Email: Jodie.dcosta@mh.org.au

Sexual Health 14(6) 558-565 https://doi.org/10.1071/SH16190
Submitted: 11 October 2016  Accepted: 8 May 2017   Published: 23 June 2017

Abstract

Background: Baseline genotyping is part of standard-of-care treatment. It reveals that transmitted drug resistance (TDR) continues to be important for the management of HIV infection. Attention is typically focused on determining whether resistance to the protease inhibitors (PI) and reverse transcriptase inhibitors (RTI) occurs. However, the increasing use of integrase inhibitors (INIs) raises a concern that TDR to this class of antiretroviral drug may also occur. Methods: PI and RTI drug resistance genotyping was performed on blood samples collected between 2005 and 2015 from 772 treatment-naïve Victorian patients infected with HIV within the previous 12 months. Integrase genotyping was performed on 461 of the 485 patient samples collected between 2010 and 2015. Results: In the period 2005–10, 39 of 343 patients (11.4%) had at least one PI- or RTI-associated mutation, compared with 34 of 429 (7.9%) during the period 2011–15. Compared with 2005–10, during 2011–15 there was a significant decline in the prevalence of the non-nucleoside-associated mutation K103N and the nucleoside-associated mutations at codons M41 and T215. One patient was detected with a major INI resistance mutation, namely G118R. However, this mutation is rare and its effect on susceptibility is unclear. A small number of patients (n = 12) was infected with HIV containing accessory resistance mutations in the integrase gene. Conclusions: The lack of transmitted resistance to INIs is consistent with a low level of resistance to this class of drugs in the treated population. However, continued surveillance in the newly infected population is warranted as the use of INIs increases.

Additional keywords: antiretrovirals, molecular typing, public health, surveillance.


References

[1]  Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, Koup RA, Mellors JW, Connick E, Conway B, Kilby M, Wang L, Whitcomb JM, Hellmann NS, Richman DD. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 2002; 347 385–94.
Antiretroviral-drug resistance among patients recently infected with HIV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFKrt78%3D&md5=ce233ab4b5250991682c97de3c745d95CAS |

[2]  Zu Knyphause F, Scheufele R, Kücherer C, Jansen K, Somogyi S, Dupke S, Jessen H, Schürmann D, Hamouda O, Meixenberger K, Bartmeyer B. First line treatment response in patients with transmitted HIV drug resistance and well defined time point of HIV infection: updated results from the German HIV-1 seroconverter study. PLoS One 2014; 9 e95956
First line treatment response in patients with transmitted HIV drug resistance and well defined time point of HIV infection: updated results from the German HIV-1 seroconverter study.Crossref | GoogleScholarGoogle Scholar |

[3]  Kleyn TJ, Liedtke MD, Harrison DL, Lockhart SM, Salvaggio MR, Ripley TL, Rathbun RC. Incidence of transmitted antiretroviral drug resistance in treatment-naive HIV-1-infected persons in a large South Central United States clinic. Ann Pharmacother 2014; 48 470–5.
Incidence of transmitted antiretroviral drug resistance in treatment-naive HIV-1-infected persons in a large South Central United States clinic.Crossref | GoogleScholarGoogle Scholar |

[4]  Yebra G, Delgado R, Pulido F, Rubio R, Galán JC, Moreno S, Holguín Á. Different trends of transmitted HIV-1 drug resistance in Madrid, Spain, among risk groups in the last decade. Arch Virol 2014; 159 1079–87.
Different trends of transmitted HIV-1 drug resistance in Madrid, Spain, among risk groups in the last decade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFajsbvE&md5=177696c80eabde77e87c9002a49cce0dCAS |

[5]  Kassaye SG, Grossman Z, Balamane M, Johnston-White B, Liu C, Kumar P, Young M, Sneller MC, Sereti I, Dewar R, Rehm C, Meyer W, Shafer R, Katzenstein D, Maldarelli F. Transmitted HIV drug resistance is high and longstanding in metropolitan Washington, DC. Clin Infect Dis 2016; 63 836–43.
Transmitted HIV drug resistance is high and longstanding in metropolitan Washington, DC.Crossref | GoogleScholarGoogle Scholar |

[6]  Hofstra LM, Sauvageot N, Albert J, Alexiev I, Garcia F, Struck D, et al Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe. Clin Infect Dis 2016; 62 655–63.
Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe.Crossref | GoogleScholarGoogle Scholar |

[7]  UK Collaborative Group on HIV Drug Resistance Time trends in drug resistant HIV-1 infections in the United Kingdom up to 2009: multicentre observational study. BMJ 2012; 345 e5253
Time trends in drug resistant HIV-1 infections in the United Kingdom up to 2009: multicentre observational study.Crossref | GoogleScholarGoogle Scholar |

[8]  Descamps D, Assoumou L, Chaix ML, Chaillon A, Pakianather S, de Rougemont A, et al National sentinel surveillance of transmitted drug resistance in antiretroviral-naive chronically HIV-infected patients in France over a decade: 2001–2011. J Antimicrob Chemother 2013; 68 2626–31.
National sentinel surveillance of transmitted drug resistance in antiretroviral-naive chronically HIV-infected patients in France over a decade: 2001–2011.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cmur7O&md5=932f5b04fda916441de5e4214b18b587CAS |

[9]  Readhead AC, Gordon DE, Wang Z, Anderson BJ, Brousseau KS, Kouznetsova MA, Forgione LA, Smith LC, Torian LV. Transmitted antiretroviral drug resistance in New York State, 2006–2008: results from a new surveillance system. PLoS One 2012; 7 e40533
Transmitted antiretroviral drug resistance in New York State, 2006–2008: results from a new surveillance system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOlt7vL&md5=4d17e4a547ef43777e33dc3f4728e3d2CAS |

[10]  Castor D, Low A, Evering T, Karmon S, Davis B, Figueroa A, LaMar M, Garmon D, Mehandru S, Markowitz M. Transmitted drug resistance and phylogenetic relationships among acute and early HIV-1 infected individuals in New York City. J Acquir Immune Defic Syndr 2012; 61 1–8.
Transmitted drug resistance and phylogenetic relationships among acute and early HIV-1 infected individuals in New York City.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kit7zN&md5=1680ebeaa4a8e4807b9a4eb17a7eb763CAS |

[11]  Russell JS, Chibo D, Kaye MB, Gooey ML, Carolan LA, Papadakis A, Nicholls JA, Birch CJ. Prevalence of transmitted HIV drug resistance since the availability of highly active antiretroviral therapy. Commun Dis Intell Q Rep 2009; 33 216–20.

[12]  Pham QD, Wilson DP, Law MG, Kelleher AD, Zhang L. Global burden of transmitted HIV drug resistance and HIV-exposure categories: a systematic review and meta-analysis. AIDS 2014; 28 2751–62.
Global burden of transmitted HIV drug resistance and HIV-exposure categories: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar |

[13]  Baxter JD, Dunn D, White E, Sharma S, Geretti AM, Kozal MJ, Johnson MA, Jacoby S, Llibre JM, Lundgren J, International Network for Strategic Initiatives in Global HIV Trials (INSIGHT) START Study Group Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment trial. HIV Med 2015; 16 77–87.
Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtF2rtb4%3D&md5=345f1d7d002ff0fc412b655d3857c1aaCAS |

[14]  Aberg JA, Kaplan JE, Libman H, Emmanuel P, Anderson JR, Stone VE, Oleske JM, Currier JS, Gallant JE, HIV Medicine Association of the Infectious Diseases Society of America Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV medicine association of the Infectious Diseases Society of America. Clin Infect Dis 2009; 49 651–81.
Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV medicine association of the Infectious Diseases Society of America.Crossref | GoogleScholarGoogle Scholar |

[15]  ASHM. Antiretroviral guidelines. US DHHS guidelines with Australian commentary. 2016. Available online at: http://arv.ashm.org.au/arv-guidelines/laboratory-testing/drug-resistance-testing [29 July 2016].

[16]  Wittkop L, Gunthard HF, de Wolf F, Dunn D, Cozzi-Lepri A, de Luca A, et al Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study. Lancet Infect Dis 2011; 11 363–71.
Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study.Crossref | GoogleScholarGoogle Scholar |

[17]  Cossarini F, Boeri E, Canducci F, Salpietro S, Bigoloni A, Galli L, Spagnuolo V, Castagna A, Clementi M, Lazzarin A, Gianotti N. Integrase and fusion inhibitors transmitted drug resistance in naïve patients with recent diagnosis of HIV-1 infection. J Acquir Immune Defic Syndr 2011; 56 e51–4.
Integrase and fusion inhibitors transmitted drug resistance in naïve patients with recent diagnosis of HIV-1 infection.Crossref | GoogleScholarGoogle Scholar |

[18]  Dimonte S, Babakir-Mina M, Aquaro S, Perno CF. Natural polymorphisms of HIV-1 subtype-C integrase coding region in a large group of ARV-naïve infected individuals. Infection 2013; 41 1097–102.
Natural polymorphisms of HIV-1 subtype-C integrase coding region in a large group of ARV-naïve infected individuals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVamsbbL&md5=282e1ee34595c85812bd4ebd495e750cCAS |

[19]  Gutiérrez C, Hernández-Novoa B, Pérez-Elías MJ, Moreno AM, Holguín A, Dronda F, Casado JL, Moreno S. Prevalence of primary resistance mutations to integrase inhibitors in treatment-naïve and -experienced patients infected with B and non-B HIV-1 variants. HIV Clin Trials 2013; 14 10–16.
Prevalence of primary resistance mutations to integrase inhibitors in treatment-naïve and -experienced patients infected with B and non-B HIV-1 variants.Crossref | GoogleScholarGoogle Scholar |

[20]  Stekler JD, McKernan J, Milne R, Tapia KA, Mykhalchenko K, Holte S, Maenza J, Stevens CE, Buskin SE, Mullins JI, Frenkel LM, Collier AC. Lack of resistance to integrase inhibitors among antiretroviral-naive subjects with primary HIV-1 infection, 2007–2013. Antivir Ther 2015; 20 77–80.
Lack of resistance to integrase inhibitors among antiretroviral-naive subjects with primary HIV-1 infection, 2007–2013.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXns1agtb8%3D&md5=3dd971a3a2e629e485424d9e9f1da8dfCAS |

[21]  Mulu A, Maier M, Liebert UG. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates. J Transl Med 2015; 13 377
Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.Crossref | GoogleScholarGoogle Scholar |

[22]  Scherrer AU, Yang WL, Kouyos RD, Böni J, Yerly S, Klimkait T, Aubert V, Cavassini M, Battegay M, Hauser C, Calmy A, Schmid P, Bernasconi E, Günthard HF, Swiss HIV Cohort Study Successful prevention of transmission of integrase resistance in the Swiss HIV Cohort Study. J Infect Dis 2016; 214 399–402.
Successful prevention of transmission of integrase resistance in the Swiss HIV Cohort Study.Crossref | GoogleScholarGoogle Scholar |

[23]  Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 Integrase inhibitor resistance and its clinical implications. J Infect Dis 2011; 203 1204–14.
HIV-1 Integrase inhibitor resistance and its clinical implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKmsLk%3D&md5=b428b611937f55a1131a381218b2ad94CAS |

[24]  Kandel CE, Walmsley SL. Dolutegravir – a review of the pharmacology, efficacy, and safety in the treatment of HIV. Drug Des Devel Ther 2015; 9 3547–55.
Dolutegravir – a review of the pharmacology, efficacy, and safety in the treatment of HIV.Crossref | GoogleScholarGoogle Scholar |

[25]  Wainberg M, Han Y. Will drug resistance against dolutegravir in initial therapy ever occur? Front Pharmacol 2015; 6 90
Will drug resistance against dolutegravir in initial therapy ever occur?Crossref | GoogleScholarGoogle Scholar |

[26]  Mesplède T, Quashie PK, Osman N, Han Y, Singhroy DN, Lie Y, Petropoulos CJ, Huang W, Wainberg MA. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure. Retrovirology 2013; 10 22
Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure.Crossref | GoogleScholarGoogle Scholar |

[27]  Fantauzzi A, Turriziani O, Mezzaroma I. Potential benefit of dolutegravir once daily: efficacy and safety. HIV AIDS 2013; 5 29–40.
| 1:CAS:528:DC%2BC3sXjtlCqsro%3D&md5=6b02f4ade9730a15d5b0ab1999697c1fCAS |

[28]  The Kirby Institute. Australian HIV observational database annual report, volume 16, number 1: August. Sydney: The Kirby Institute, UNSW Australia; 2016.

[29]  144-week data released on Gilead’s study 934. AIDS Patient Care STDS 2007; 21 603–4.

[30]  Staszewski S, Hill AM, Bartlett J,, Eron JJ, Katlama C, Johnson J, Sawyer W, McDade H. Reductions in HIV-1 disease progression for zidovudine/lamivudine relative to control treatment: a meta-analysis of controlled trials. AIDS 1997; 111 477–83.

[31]  Staszewski S, Loveday C, Picazo JJ, Dellarnonica P, Skinhøj P, Johnson MA, Danner SA, Harrigan PR, Hill AM, Verity L, McDade H. Safety and efficacy of lamivudine-zidovudine combination therapy in zidovudine experienced patients. A randomised controlled comparison with zidovudine monotherapy. JAMA 1996; 276 111–17.
| 1:CAS:528:DyaK28XkslShsLg%3D&md5=2dda9241f5dbbc68b12fc3f7f7db7dbaCAS |

[32]  Anderson AM, Bartlett JA. Fixed dose combination abacavir/lamivudine in the treatment of HIV-1 infection. Expert Rev Anti Infect Ther 2005; 3 871–83.
| 1:CAS:528:DC%2BD28XitFKmtg%3D%3D&md5=fef2d39b383399ecc8b4e7d7c2118b85CAS |

[33]  Middleton T, Smith D, Larder B, Law M, Birch C. Baseline antiretroviral drug susceptibility influences treatment response in patients receiving saquinavir-enhancing therapy. HIV Clin Trials 2001; 2 445–52.
Baseline antiretroviral drug susceptibility influences treatment response in patients receiving saquinavir-enhancing therapy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MjgtV2rtg%3D%3D&md5=886e6e1879c47b517f279c15b4b64a04CAS |

[34]  Little SJ, Daar ES, D’Aquila RT, Keiser PH, Connick E, Whitcomb JM, Hellmann NS, Petropoulos CJ, Sutton L, Pitt JA, Rosenberg ES, Koup RA, Walker BD, Richman DD. Reduced antiretroviral drug susceptibility among patients with primary HIV infection. JAMA 1999; 282 1142–9.
Reduced antiretroviral drug susceptibility among patients with primary HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvivFahtw%3D%3D&md5=bb093558bbed3a8cfbefb2ae77d1f63aCAS |

[35]  Hecht FM, Grant RM, Petropoulos CJ, Dillon B, Chesney MA, Tian H, Hellmann NS, Bandrapalli NI, Digilio L, Branson B, Kahn JO. Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors. N Engl J Med 1998; 339 307–11.
Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czjsF2ksQ%3D%3D&md5=fb9fa3e29e5262b0971c1f8507a82babCAS |

[36]  Imrie A, Beveridge A, Genn W, Vizzard J, Cooper DA. Transmission of human immunodeficiency virus type 1 resistant to nevirapine and zidovudine. Sydney Primary HIV Infection Study Group. J Infect Dis 1997; 175 1502–6.
Transmission of human immunodeficiency virus type 1 resistant to nevirapine and zidovudine. Sydney Primary HIV Infection Study Group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsl2js7Y%3D&md5=181743c0f0fff1b119b5ade7ee49abcdCAS |

[37]  Erice A, Mayers DL, Strike DG, Sannerud KJ, McCutchan FE, Henry K, Balfour HH. Brief report: primary infection with zidovudine resistant human immunodeficiency virus type 1. N Engl J Med 1993; 328 1163–5.
Brief report: primary infection with zidovudine resistant human immunodeficiency virus type 1.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3gsFSktQ%3D%3D&md5=df0a8a31a8848d23251f33578cdf8794CAS |

[38]  Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin Infect Dis 2006; 42 1608–18.
Web resources for HIV type 1 genotypic-resistance test interpretation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVOrsro%3D&md5=74705458376d8faf73591bc84d2ddc17CAS |

[39]  Bennett DE, Camacho RJ, Otelea D, Kuritzkes DR, Fleury H, Kiuchi M, Heneine W, Kantor R, Jordan MR, Schapiro JM, Vandamme AM, Sandstrom P, Boucher CA, van de Vijver D, Rhee SY, Liu TF, Pillay D, Shafer RW. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS One 2009; 4 e4724
Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update.Crossref | GoogleScholarGoogle Scholar |

[40]  The Kirby Institute. Australian HIV observational database annual report, volume 7, number 1: December. Sydney: The Kirby Institute, UNSW Australia; 2007.

[41]  Vega Y, Delgado E, Fernández-García A, Cuevas MT, Thomson MM, Montero V, Sánchez M, Sánchez AM, Pérez-Álvarez L, Spanish Group for the Study of New HIV-1 Diagnoses in Galicia and Basque Country Epidemiological surveillance of HIV-1 transmitted drug resistance in Spain in 2004–2012: relevance of transmission clusters in the propagation of resistance mutations. PLoS One 2015; 10 e0125699
Epidemiological surveillance of HIV-1 transmitted drug resistance in Spain in 2004–2012: relevance of transmission clusters in the propagation of resistance mutations.Crossref | GoogleScholarGoogle Scholar |

[42]  Franzetti M, Lai A, Simonetti FR, Bozzi G, De Luca A, Micheli V, Meraviglia P, Corsi P, Bagnarelli P, Almi P, Zoncada A, Balotta C. High burden of transmitted HIV-1 drug resistance in Italian patients carrying F1 subtype. J Antimicrob Chemother 2012; 67 1250–3.
High burden of transmitted HIV-1 drug resistance in Italian patients carrying F1 subtype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1GnsLk%3D&md5=0c70b23a0b20c8f514e3e2a625c632b7CAS |

[43]  Brenner BG, Routy JP, Petrella M, Moisi D, Oliveira M, Detorio M, Spira B, Essabag V, Conway B, Lalonde R, Sekaly RP, Wainberg MA. Persistence and fitness of multidrug-resistant human immunodeficiency virus type 1 acquired in primary infection. J Virol 2002; 76 1753–61.
Persistence and fitness of multidrug-resistant human immunodeficiency virus type 1 acquired in primary infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyrsA%3D%3D&md5=b5b8984cfd10a3f8782553bfe98f44afCAS |

[44]  Armstrong KL, Lee TH, Essex M. Replicative fitness costs of nonnucleoside reverse transcriptase inhibitor drug resistance mutations on HIV subtype C. Antimicrob Agents Chemother 2011; 55 2146–53.
Replicative fitness costs of nonnucleoside reverse transcriptase inhibitor drug resistance mutations on HIV subtype C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFClsL%2FI&md5=7f1bbe5c5af3012808943ad5d0c7790fCAS |

[45]  Cong ME, Heneine W, Garcia-Lerma JG. The fitness cost of mutations associated with human immunodeficiency virus type 1 drug resistance is modulated by mutational interactions. J Virol 2007; 81 3037–41.
The fitness cost of mutations associated with human immunodeficiency virus type 1 drug resistance is modulated by mutational interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Grtb8%3D&md5=02cb354be7b379b681bf699390b3558dCAS |

[46]  Zaccarelli M, Perno CF, Forbici F, Cingolani A, Liuzzi G, Bertoli A, Trotta MP, Bellocchi MC, Di Giambenedetto S, Tozzi V, Gori C, D’Arrigo R, De Longis P, Noto P, Girardi E, De Luca A, Antinori A. Using a database of HIV patients undergoing genotypic resistance test after HAART failure to understand the dynamics of M184V mutation. Antivir Ther 2003; 8 51–6.
| 1:CAS:528:DC%2BD3sXktVSgtbc%3D&md5=30117976b21b909467060502653c7059CAS |

[47]  Metzner KJ, Leemann C, Di Giallonardo F, Grube C, Scherrer AU, Braun D, Kuster H, Weber R, Guenthard HF. Reappearance of minority K103N HIV-1 variants after interruption of ART initiated during primary HIV-1 infection. PLoS One 2011; 6 e21734
Reappearance of minority K103N HIV-1 variants after interruption of ART initiated during primary HIV-1 infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVamsL0%3D&md5=276d7dcc0a971ba28145dab74905a622CAS |

[48]  Polilli E, Parruti G, Cosentino L, Sozio F, Saracino A, Consorte A, Angarano G, Di Masi F, Mazzotta E, Fazii P. Rapid and persistent selection of the K103N mutation as a majority quasispecies in a HIV1-patient exposed to efavirenz for three weeks: a case report and review of the literature. J Med Case Reports 2009; 3 9132
Rapid and persistent selection of the K103N mutation as a majority quasispecies in a HIV1-patient exposed to efavirenz for three weeks: a case report and review of the literature.Crossref | GoogleScholarGoogle Scholar |

[49]  Bar-Magen T, Sloan R, Donahue D, Kuhl BD, Zabeida A, Xu H, Oliveira M, Hazuda DJ, Wainberg MA. Identification of novel mutations responsible for resistance to MK-2048, a second generation HIV-1 integrase inhibitor. J Virol 2010; 84 9210–16.
Identification of novel mutations responsible for resistance to MK-2048, a second generation HIV-1 integrase inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WgtLnE&md5=7c21d996b140473e149c66128c64d560CAS |

[50]  Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 2012; 86 2696–2705.
Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFSqsr8%3D&md5=f9a1f8e130d9813a6e7cff588658db52CAS |

[51]  Malet I, Fourati S, Charpentier C, Morand-Joubert L, Armenia D, Wirden M, Sayon S, Van Houtte M, Ceccherini-Silberstein F, Brun-Vézinet F, Perno CF, Descamps D, Capt A, Calvez V, Marcelin AG. The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype. J Antimicrob Chemother 2011; 66 2827–30.
The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSksbnK&md5=02e8d8019d8e9b8fe3cf479f273edcb6CAS |

[52]  Malet I, Soulie C, Tchertanov L, Derache A, Amellal B, Traore O, Simon A, Katlama C, Mouscadet JF, Calvez V, Marcelin AG. Structural effects of amino acid variations between B and CRF02-AG HIV-1 integrases. J Med Virol 2008; 80 754–61.
Structural effects of amino acid variations between B and CRF02-AG HIV-1 integrases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFCku7s%3D&md5=eb457d82dc7e3fcc581269942b92907cCAS |

[53]  Ceccherini-Silberstein F, Malet I, D’Arrigo R, Antinori A, Marcelin AG, Perno CF. Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev 2009; 11 17–29.

[54]  Varghese V, Liu T, Rhee S, Libiran P, Trevino C, Fessel WJ, Shafer RW. HIV-1 integrase sequence variability in antiretroviral naïve patients and in triple-class experienced patients subsequently treated with raltegravir. AIDS Res Hum Retroviruses 2010; 26 1323–6.
HIV-1 integrase sequence variability in antiretroviral naïve patients and in triple-class experienced patients subsequently treated with raltegravir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCrtLjE&md5=2997854752b296c77f002bffbd4391ddCAS |

[55]  Low A, Prada N, Topper M, Vaida F, Castor D, Mohri H, Hazuda D, Muesing M, Markowitz M. Natural polymorphisms of human immunodeficiency virus type 1 integrase and inherent susceptibilities to a panel of integrase inhibitors. Antimicrob Agents Chemother 2009; 53 4275–82.
Natural polymorphisms of human immunodeficiency virus type 1 integrase and inherent susceptibilities to a panel of integrase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KkurrN&md5=041fda5225666131eda1afe1f0be74e9CAS |

[56]  Liu J, Miller MD, Danovich RM, Vandergrift N, Cai F, Hicks CB, Hazuda DJ, Gao F. Analysis of low-frequency mutations associated with drug resistance to raltegravir before antiretroviral treatment. Antimicrob Agents Chemother 2011; 55 1114–9.
Analysis of low-frequency mutations associated with drug resistance to raltegravir before antiretroviral treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlamtLs%3D&md5=4497dca20be53ffd765cdaefb146b250CAS |

[57]  Armenia D, Vandenbroucke I, Fabeni L, Van Marck H, Cento V, D’Arrigo R, Van Wesenbeeck L, Scopelliti F, Micheli V, Bruzzone B, Lo Caputo S, Aerssens J, Rizzardini G, Tozzi V, Narciso P, Antinori A, Stuyver L, Perno CF, Ceccherini-Silberstein F. Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis 2012; 205 557–67.
Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyjsr8%3D&md5=67be2fa36753ba5a23c2dc0b947692a2CAS |

[58]  Van Hal SJ, Herring B, Deris Z, Wang B, Saksena NK, Dwyer DE. HIV-1 integrase polymorphisms are associated with prior antiretroviral drug exposure. Retrovirology 2009; 6 12
HIV-1 integrase polymorphisms are associated with prior antiretroviral drug exposure.Crossref | GoogleScholarGoogle Scholar |

[59]  Fransen S, Gupta S, Frantzell A, Petropoulos CJ, Huang W. Substitutions at Amino Acid Positions 143, 148, and 155 of HIV-1 Integrase Define Distinct Genetic Barriers to Raltegravir Resistance In Vivo. J Virol 2012; 86 7249–55.
Substitutions at Amino Acid Positions 143, 148, and 155 of HIV-1 Integrase Define Distinct Genetic Barriers to Raltegravir Resistance In Vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVansLzF&md5=591204069776e7eef37ae15f8ff10bc9CAS |

[60]  Eron JJ, Clotet B, Durant J, Katlama C, Kumar P, Lazzarin A, Poizot-Martin I, Richmond G, Soriano V, Ait-Khaled M, Fujiwara T, Huang J, Min S, Vavro C, Yeo J. Safety and Efficacy of Dolutegravir in Treatment-Experienced Subjects With Raltegravir-Resistant HIV Type 1 Infection: 24-Week Results of the VIKING Study. J Infect Dis 2013; 207 740–8.
Safety and Efficacy of Dolutegravir in Treatment-Experienced Subjects With Raltegravir-Resistant HIV Type 1 Infection: 24-Week Results of the VIKING Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1WmtLc%3D&md5=9e56e02b76885b71fe0e1e50739f8ac7CAS |

[61]  Fransen S, Gupta S, Danovich R, Hazuda D, Miller M, Witmer M, Petropoulos CJ, Huang W. Loss of raltegravir susceptibility of HIV-1 is conferred by multiple non-overlapping genetic pathways. J Virol 2009; 83 11440–6.
Loss of raltegravir susceptibility of HIV-1 is conferred by multiple non-overlapping genetic pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFKqsLc%3D&md5=89a57d0ddacb6e7fbc3d38836f126e6fCAS |

[62]  Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, Lazzarin A, Clementi M. Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis 2011; 204 1811–15.
Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqt7vN&md5=f35a91460f6785340cf9aa0e13941f8eCAS |

[63]  Kobayashi M, Nakahara K, Seki T, Miki S, Kawauchi S, Suyama A, Wakasa-Morimoto C, Kodama M, Endoh T, Oosugi E, Matsushita Y, Murai H, Fujishita T, Yoshinaga T, Garvey E, Foster S, Underwood M, Johns B, Sato A, Fujiwara T. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Res 2008; 80 213–22.
Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ensLnF&md5=0422623e800da33111eb284bee2d32c9CAS |

[64]  Jones GS, Yu F, Zeynalzadegan A, Hesselgesser J, Chen X, Chen J, Jin H, Kim CU, Wright M, Geleziunas R, Tsiang M. Preclinical evaluation of GS-9160, a novel inhibitor of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 2009; 53 1194–203.
Preclinical evaluation of GS-9160, a novel inhibitor of human immunodeficiency virus type 1 integrase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2ks74%3D&md5=b69a3ccb0e438b70dc6b3bfd27ea2d2fCAS |

[65]  Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, Kano M, Ikeda S, Matsuoka M. Broad Antiretroviral Activity and Resistance Profile of the Novel Human Immunodeficiency Virus Integrase Inhibitor Elvitegravir (JTK-303/GS-9137). J Virol 2008; 82 764–74.
Broad Antiretroviral Activity and Resistance Profile of the Novel Human Immunodeficiency Virus Integrase Inhibitor Elvitegravir (JTK-303/GS-9137).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFCmug%3D%3D&md5=42a437ce8a1d5d034d31f6d8915d24cdCAS |

[66]  Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, Foster SA, Hazen RJ, Miki S, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, Underwood MR, Garvey EP, Sato A, Fujiwara T. In Vitro Antiretroviral Properties of S/GSK1349572, a Next-Generation HIV Integrase Inhibitor. Antimicrob Agents Chemother 2011; 55 813–21.
In Vitro Antiretroviral Properties of S/GSK1349572, a Next-Generation HIV Integrase Inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVyjt7g%3D&md5=9a3895d1585e99d8339260eaaeee9dfeCAS |

[67]  Pennings P. HIV drug resistance: problems and perspectives. Infect Dis Rep 2013; 5 e5
HIV drug resistance: problems and perspectives.Crossref | GoogleScholarGoogle Scholar |

[68]  Garcia-Diaz A, McCormick A, Booth C, Gonzalez D, Sayada C, Haque T, Johnson M, Webster D. Analysis of transmitted HIV-1 drug resistance using 454 ultra-deep-sequencing and the DeepChek®-HIV system. J Int AIDS Soc 2014; 17 19752

[69]  Li JZ, Paredes R, Ribaudo HJ, Svarovskaia ES, Metzner KJ, Kozal MJ, Hullsiek KH, Balduin M, Jakobsen MR, Geretti AM, Thiebaut R, Ostergaard L, Masquelier B, Johnson JA, Miller MD, Kuritzkes DR. Low frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: a systematic review and pooled analysis. JAMA 2011; 305 1327–35.
Low frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: a systematic review and pooled analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFehu7w%3D&md5=2cd7ace5db2f59fbba38aaddd4fa3c07CAS |