Register      Login
Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
REVIEW

Genetic influences on HIV infection: implications for vaccine development

Miranda Z. Smith A and Stephen J. Kent A B
+ Author Affiliations
- Author Affiliations

A Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic. 3010, Australia.

B Corresponding author. Email: skent@unimelb.edu.au

Sexual Health 2(2) 53-62 https://doi.org/10.1071/SH04057
Submitted: 7 December 2004  Accepted: 24 February 2004   Published: 16 June 2005

Abstract

Human HIV infection is characterised by great variability in outcome. Much of this variability is due either to viral variation or host genetic factors, particularly major histocompatibility complex differences within genetically diverse populations. The study of non-human primates infected with well characterised simian immunodeficiency virus strains has recently allowed further dissection of the critical role of genetic influences on both susceptibility to infection and progression to AIDS. This review summarises the important role of many host genetic factors on HIV infection and highlights important variables that will need to be taken into account in evaluating effective HIV vaccines.

Additional keywords: MHC, T-cells.


References


[1] Hirsch VM,  Olmsted RA,  Murphey-Corb M,  Purcell RH,  Johnson PR. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 1989; 339(6223): 389–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[2] Freed EO, Martin MA. HIVs and their replication. In: Knipe DM, Howley PM, eds. Fields virology. 4 ed. Philadelphia: Lippincott Williams & Wilkins; 2001. pp. 1971–2041.

[3] Roberts JD,  Bebenek K,  Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242(4882): 1171–3.
PubMed |

[4] Levy DN,  Aldrovandi GM,  Kutsch O,  Shaw GM. Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci USA 2004; 101(12): 4204–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[5] Wolinsky SM,  Korber BT,  Neumann AU,  Daniels M,  Kunstman KJ,  Whetsell AJ, et al. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 1996; 272(5261): 537–42.
PubMed |

[6] Johnson RP. Macaque models for AIDS vaccine development. Curr Opin Immunol 1996; 8(4): 554–60.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[7] Joag SV,  Li Z,  Foresman L,  Stephens EB,  Zhao LJ,  Adany I, et al. Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J Virol 1996; 70(5): 3189–97.
PubMed |

[8] O'Brien SJ,  Nelson GW. Human genes that limit AIDS. Nat Genet 2004; 36(6): 565–74.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[9] Winkler C,  An P,  O’Brien SJ. Patterns of ethnic diversity among the genes that influence AIDS. Hum Mol Genet 2004; 13(1): 9–19.
Crossref | GoogleScholarGoogle Scholar |

[10] Dean M,  Carrington M,  Winkler C,  Huttley GA,  Smith MW,  Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273(5283): 1856–62.
PubMed |

[11] Duggal P,  An P,  Beaty TH,  Strathdee SA,  Farzadegan H,  Markham RB, et al. Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans. Genes Immun 2003; 4(4): 245–50.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[12] Anzala AO,  Ball TB,  Rostron T,  O'Brien SJ,  Plummer FA,  Rowland-Jones SL. CCR2–64I allele and genotype association with delayed AIDS progression in African women. University of Nairobi Collaboration for HIV Research. Lancet 1998; 351(9116): 1632–3.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[13] Martinson JJ,  Chapman NH,  Rees DC,  Liu YT,  Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 1997; 16(1): 100–3.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[14] Kokkotou E,  Philippon V,  Gueye-Ndiaye A,  Mboup S,  Wang WK,  Essex M, et al. Role of the CCR5 delta 32 allele in resistance to HIV-1 infection in west Africa. J Hum Virol 1998; 1(7): 469–74.
PubMed |

[15] Gonzalez E,  Bamshad M,  Sato N,  Mummidi S,  Dhanda R,  Catano G, et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci USA 1999; 96(21): 12004–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[16] Faure S,  Meyer L,  Costagliola D,  Vaneensberghe C,  Genin E,  Autran B, et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 2000; 287(5461): 2274–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[17] Puissant B,  Abbal M,  Blancher A. Polymorphism of human and primate RANTES, CX3CR1, CCR2 and CXCR4 genes with regard to HIV/SIV infection. Immunogenetics 2003; 55(5): 275–83.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[18] van Rij RP,  Broersen S,  Goudsmit J,  Coutinho RA,  Schuitemaker H. The role of a stromal cell-derived factor-1 chemokine gene variant in the clinical course of HIV-1 infection. AIDS 1998; 12(9): F85–90.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[19] Winkler C,  Modi W,  Smith MW,  Nelson GW,  Wu X,  Carrington M, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 1998; 279(5349): 389–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[20] McDermott DH,  Beecroft MJ,  Kleeberger CA,  Al-Sharif FM,  Ollier WE,  Zimmerman PA, et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 2000; 14(17): 2671–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[21] Shin HD,  Winkler C,  Stephens JC,  Bream J,  Young H,  Goedert JJ, et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA 2000; 97(26): 14467–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[22] An P,  Vlahov D,  Margolick JB,  Phair J,  O'Brien TR,  Lautenberger J, et al. A tumor necrosis factor-alpha-inducible promoter variant of interferon-gamma accelerates CD4+ T cell depletion in human immunodeficiency virus-1-infected individuals. J Infect Dis 2003; 188(2): 228–31.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[23] Martin MP,  Gao X,  Lee JH,  Nelson GW,  Detels R,  Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002; 31(4): 429–34.
PubMed |

[24] An P,  Bleiber G,  Duggal P,  Nelson G,  May M,  Mangeat B, et al. APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol 2004; 78(20): 11070–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[25] Hayes VM,  Gardiner-Garden M. Are polymorphic markers within the alpha-1-antitrypsin gene associated with risk of human immunodeficiency virus disease? J Infect Dis 2003; 188(8): 1205–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[26] Klein J,  Sato A. The HLA system. First of two parts. N Engl J Med 2000; 343(10): 702–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[27] Sauermann U,  Stahl-Hennig C,  Stolte N,  Muhl T,  Krawczak M,  Spring M, et al. Homozygosity for a conserved Mhc class II DQ-DRB haplotype is associated with rapid disease progression in simian immunodeficiency virus-infected macaques: results from a prospective study. J Infect Dis 2000; 182(3): 716–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[28] Trachtenberg EA, Erlich HA. A review of the role of the Human Leukocyte Antigen (HLA) system as a host immunogenic factor influencing HIV transmission and progression to AIDS. In: Korber B, Brander C, Haynes B, Koup RA, Kuiken C, Moore JP, et al. eds. HIV molecular immunology, 2001. Los Alamos: Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico; 2001.

[29] Carrington M,  Bontrop RE. Effects of MHC class I on HIV/SIV disease in primates. AIDS 2002; 16(Suppl 4): S105–14.
PubMed |

[30] Moore CB,  John M,  James IR,  Christiansen FT,  Witt CS,  Mallal SA. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 2002; 296(5572): 1439–43.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[31] O'Connor DH,  Mothe BR,  Weinfurter JT,  Fuenger S,  Rehrauer WM,  Jing P, et al. Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-T-lymphocyte responses. J Virol 2003; 77(16): 9029–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[32] MacDonald KS,  Fowke KR,  Kimani J,  Dunand VA,  Nagelkerke NJ,  Ball TB, et al. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis 2000; 181(5): 1581–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[33] Evans DT,  Knapp LA,  Jing P,  Mitchen JL,  Dykhuizen M,  Montefiori DC, et al. Rapid and slow progressors differ by a single MHC class I haplotype in a family of MHC-defined rhesus macaques infected with SIV. Immunol Lett 1999; 66(1–3): 53–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[34] Muhl T,  Krawczak M,  Ten Haaft P,  Hunsmann G,  Sauermann U. MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. J Immunol 2002; 169(6): 3438–46.
PubMed |

[35] Koup RA,  Safrit JT,  Cao Y,  Andrews CA,  McLeod G,  Borkowsky W, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994; 68(7): 4650–55.
PubMed |

[36] Schmitz JE,  Kuroda MJ,  Santra S,  Sasseville VG,  Simon MA,  Lifton MA, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999; 283(5403): 857–60.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[37] McMichael AJ,  Rowland-Jones SL. Cellular immune responses to HIV. Nature 2001; 410(6831): 980–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[38] Carrington M,  Nelson GW,  Martin MP,  Kissner T,  Vlahov D,  Goedert JJ, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 1999; 283(5408): 1748–52.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[39] Tang J,  Costello C,  Keet IP,  Rivers C,  Leblanc S,  Karita E, et al. HLA class I homozygosity accelerates disease progression in human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 1999; 15(4): 317–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[40] Kiepiela P,  Leslie AJ,  Honeyborne I,  Ramduth D,  Thobakgale C,  Chetty S, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 2004; 432(7018): 769–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[41] Flores-Villanueva PO,  Yunis EJ,  Delgado JC,  Vittinghoff E,  Buchbinder S,  Leung JY, et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc Natl Acad Sci USA 2001; 98(9): 5140–5.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[42] Lutz CT,  Smith KD,  Greazel NS,  Mace BE,  Jensen DA,  McCutcheon JA, et al. Bw4-reactive and Bw6-reactive antibodies recognize multiple distinct HLA structures that partially overlap in the alpha-1 helix. J Immunol 1994; 153(9): 4099–110.
PubMed |

[43] Arnett KL,  Huang W,  Valiante NM,  Barber LD,  Parham P. The Bw4/Bw6 difference between HLA-B*0802 and HLA-B*0801 changes the peptides endogenously bound and the stimulation of alloreactive T cells. Immunogenetics 1998; 48(1): 56–61.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[44] Gumperz JE,  Litwin V,  Phillips JH,  Lanier LL,  Parham P. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 1995; 181(3): 1133–44.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[45] O'Brien SJ,  Gao X,  Carrington M. HLA and AIDS: a cautionary tale. Trends Mol Med 2001; 7(9): 379–81.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[46] Scherer A,  Frater J,  Oxenius A,  Agudelo J,  Price DA,  Gunthard HF, et al. Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proc Natl Acad Sci USA 2004; 101(33): 12266–70.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[47] Gao X,  Nelson GW,  Karacki P,  Martin MP,  Phair J,  Kaslow R, et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med 2001; 344(22): 1668–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[48] Liu C,  Carrington M,  Kaslow RA,  Gao X,  Rinaldo CR,  Jacobson LP, et al. Association of polymorphisms in human leukocyte antigen class I and transporter associated with antigen processing genes with resistance to human immunodeficiency virus type 1 infection. J Infect Dis 2003; 187(9): 1404–10.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[49] Weinfurter JT,  Riek CJ,  Hutcheson HB,  O'Connor DH,  Carrington M,  Watkins DI. The major histocompatibility complex class I alleles Mamu-A*1304 and Mamu-A*1403 are associated with rapid disease progression in SIV-infected Rhesus macaques. J Virol ;
PubMed |

[50] Evans DT,  Jing P,  Allen TM,  O'Connor DH,  Horton H,  Venham JE, et al. Definition of five new simian immunodeficiency virus cytotoxic T-lymphocyte epitopes and their restricting major histocompatibility complex class I molecules: evidence for an influence on disease progression. J Virol 2000; 74(16): 7400–10.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[51] Carrington M,  O'Brien SJ. The influence of HLA genotype on AIDS. Annu Rev Med 2003; 54 535–51.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[52] Kaslow RA,  Carrington M,  Apple R,  Park L,  Munoz A,  Saah AJ, et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 1996; 2(4): 405–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[53] Costello C,  Tang J,  Rivers C,  Karita E,  Meizen-Derr J,  Allen S, et al. HLA-B*5703 independently associated with slower HIV-1 disease progression in Rwandan women. AIDS 1999; 13(14): 1990–1.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[54] Migueles SA,  Sabbaghian MS,  Shupert WL,  Bettinotti MP,  Marincola FM,  Martino L, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA 2000; 97(6): 2709–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[55] Goulder PJ,  Bunce M,  Krausa P,  McIntyre K,  Crowley S,  Morgan B, et al. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res Hum Retroviruses 1996; 12(18): 1691–8.
PubMed |

[56] Goulder PJ,  Tang Y,  Pelton SI,  Walker BD. HLA-B57-restricted cytotoxic T-lymphocyte activity in a single infected subject toward two optimal epitopes, one of which is entirely contained within the other. J Virol 2000; 74(11): 5291–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[57] Gillespie GM,  Kaul R,  Dong T,  Yang HB,  Rostron T,  Bwayo JJ, et al. Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B*57. AIDS 2002; 16(7): 961–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[58] Goulder PJ,  Phillips RE,  Colbert RA,  McAdam SN,  Ogg GS,  Nowak MA, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 1997; 3(2): 212–17.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[59] Kelleher AD,  Long C,  Holmes EC,  Allen RL,  Wilson J,  Conlon C, et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med 2001; 193(3): 375–86.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[60] Zhang ZQ,  Fu TM,  Casimiro DR,  Davies ME,  Liang X,  Schleif WA, et al. Mamu-A*01 allele-mediated attenuation of disease progression in simian-human immunodeficiency virus infection. J Virol 2002; 76(24): 12845–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[61] Smith MZ,  Dale CJ,  De Rose R,  Stratov I,  Fernandez CS,  Brooks AG, et al. Analysis of pigtail macaque Major Histocompatibility Complex Class I molecules presenting immunodominant Simian Immunodeficiency Virus epitopes. J Virol 2005; 79(2): 684–95.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[62] Gaur LK,  Antonelli P,  Clark EA,  Hansen JA. Evolution of HLA Class I epitopes defined by murine monoclonal antibodies: distribution in macaques. Hum Immunol 1986; 17 406–15.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[63] Gaur LK,  Bowden DM,  Tsai CC,  Davis A,  Clark EA. The Major Histocompatibility Complex, MnLA, of pigtailed macaques: definition of fifteen specificities. Hum Immunol 1989; 24 277–94.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[64] Knapp LA,  Lehmann E,  Piekarczyk MS,  Urvater JA,  Watkins DI. A high frequency of Mamu-A*01 in the rhesus macaque detected by polymerase chain reaction with sequence-specific primers and direct sequencing. Tissue Antigens 1997; 50(6): 657–61.
PubMed |

[65] Lobashevsky AL,  Thomas JM. Six mamu-A locus alleles defined by a polymerase chain reaction sequence specific primer method. Hum Immunol 2000; 61(10): 1013–20.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[66] Horton H,  Rehrauer W,  Meek EC,  Shultz MA,  Piekarczyk MS,  Jing P, et al. A common rhesus macaque MHC class I molecule which binds a cytotoxic T-lymphocyte epitope in Nef of simian immunodeficiency virus. Immunogenetics 2001; 53(5): 423–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[67] Arguello JR,  Little AM,  Bohan E,  Goldman JM,  Marsh SG,  Madrigal JA. High resolution HLA class I typing by reference strand mediated conformation analysis (RSCA). Tissue Antigens 1998; 52(1): 57–66.
PubMed |

[68] Arguello JR, Perez-Rodriguez M, Pay AL, Fisher G, McWhinnie A, Madrigal A. HLA typing with reference strand-mediated conformation analysis. In: Vaughan RW, Powis SH, eds. MHC protocols. Totowa, NJ: Humana Press; 2003. pp. xii, 340.

[69] Drake GJ,  Kennedy LJ,  Auty HK,  Ryvar R,  Ollier WE,  Kitchener AC, et al. The use of reference strand-mediated conformational analysis for the study of cheetah (Acinonyx jubatus) feline leucocyte antigen class II DRB polymorphisms. Mol Ecol 2004; 13(1): 221–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[70] Arguello JR,  Little AM,  Pay AL,  Gallardo D,  Rojas I,  Marsh SG, et al. Mutation detection and typing of polymorphic loci through double-strand conformation analysis. Nat Genet 1998; 18(2): 192–4.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[71] Altman JD,  Moss PA,  Goulder PJ,  Barouch DH,  McHeyzer-Williams MG,  Bell JI, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274(5284): 94–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[72] Kuroda MJ,  Schmitz JE,  Barouch DH,  Craiu A,  Allen TM,  Sette A, et al. Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. J Exp Med 1998; 187(9): 1373–81.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[73] Egan MA,  Kuroda MJ,  Voss G,  Schmitz JE,  Charini WA,  Lord CI, et al. Use of major histocompatibility complex class I/peptide/beta2M tetramers to quantitate CD8(+) cytotoxic T lymphocytes specific for dominant and nondominant viral epitopes in simian-human immunodeficiency virus-infected rhesus monkeys. J Virol 1999; 73(7): 5466–72.
PubMed |

[74] Mothé BR,  Horton H,  Carter DK,  Allen TM,  Liebl ME,  Skinner P, et al. Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection. J Virol 2002; 76(2): 875–84.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[75] Xu X-N,  Screaton GR. MHC/peptide tetramer-based studies of T cell function. J Imm Meth 2002; 268 21–8.
Crossref | GoogleScholarGoogle Scholar |

[76] Appay V,  Rowland-Jones SL. The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining. J Imm Meth 2002; 268 9–19.
Crossref | GoogleScholarGoogle Scholar |

[77] Ferrari G,  Neal W,  Ottinger J,  Jones AM,  Edwards BH,  Goepfert P, et al. Absence of immunodominant anti-Gag p17 (SL9) responses among Gag CTL-positive, HIV-uninfected vaccine recipients expressing the HLA-A*0201 allele. J Immunol 2004; 173(3): 2126–33.
PubMed |

[78] Borrow P,  Lewiki H,  Wei X,  Horwitz MS,  Peffer N,  Meyers H, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3(2): 205–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[79] O'Connor D,  Friedrich T,  Hughes A,  Allen TM,  Watkins D. Understanding cytotoxic T-lymphocyte escape during simian immunodeficiency virus infection. Immunol Rev 2001; 183 115–26.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[80] Barouch DH,  Kunstman J,  Glowczwskie J,  Kunstman KJ,  Egan MA,  Peyerl FW, et al. Viral escape from dominant simian immunodeficiency virus epitope-specific cytotoxic T lymphocytes in DNA-vaccinated Rhesus monkeys. J Virol 2003; 77(13): 7367–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[81] Richman DD,  Wrin T,  Little SJ,  Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 2003; 100(7): 4144–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[82] Wei X,  Decker JM,  Wang S,  Hui H,  Kappes JC,  Wu X, et al. Antibody neutralization and escape by HIV-1. Nature 2003; 422(6929): 307–12.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[83] Friedrich TC,  McDermott AB,  Reynolds MR,  Piaskowski S,  Fuenger S,  De Souza IP, et al. Consequences of cytotoxic T-lymphocyte escape: common escape mutations in simian immunodeficiency virus are poorly recognized in naive hosts. J Virol 2004; 78(18): 10064–73.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[84] Barouch DH,  Powers J,  Truitt DM,  Kishko MG,  Arthur JC,  Peyerl FW, et al. Dynamic immune responses maintain cytotoxic T lymphocyte epitope mutations in transmitted simian immunodeficiency virus variants. Nat Immunol 2005; 6(3): 247–52.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[85] Goulder PJ,  Watkins DI. HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 2004; 4(8): 630–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[86] Barouch DH,  Kunstman J,  Kuroda MJ,  Schmitz JE,  Santra S,  Peyerl FW, et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 2002; 415(6869): 335–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[87] Peyerl FW,  Barouch DH,  Letvin NL. Structural constraints on viral escape from HIV- and SIV-specific cytotoxic T-lymphocytes. Viral Immunol 2004; 17(2): 144–51.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[88] Fernandez CS,  Stratov I,  De Rose R,  Walsh K,  Dale CJ,  Smith MZ, et al. Rapid viral escape at an immunodominant SHIV CTL epitope exacts a dramatic fitness cost. J Virol 2005; 79(9): 5721–31.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[89] Friedrich TC,  Dodds EJ,  Yant LJ,  Vojnov L,  Rudersdorf R,  Cullen C, et al. Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nat Med 2004; 10(3): 275–81.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[90] Leslie AJ,  Pfafferott KJ,  Chetty P,  Draenert R,  Addo MM,  Feeney M, et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 2004; 10(3): 282–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[91] O'Connor D,  Allen T,  Watkins DI. Vaccination with CTL epitopes that escape: an alternative approach to HIV vaccine development? Immunol Lett 2001; 79(1–2): 77–84.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[92] Fultz PN,  McClure HM,  Anderson DC,  Swenson RB,  Anand R,  Srinivasan A. Isolation of a T-lymphotropic retrovirus from naturally infected sooty mangabey monkeys (Cercocebus atys). Proc Natl Acad Sci USA 1986; 83(14): 5286–90.
PubMed |

[93] Peeters M,  Honore C,  Huet T,  Bedjabaga L,  Ossari S,  Bussi P, et al. Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon. AIDS 1989; 3(10): 625–30.
PubMed |

[94] Rey-Cuille MA,  Berthier JL,  Bomsel-Demontoy MC,  Chaduc Y,  Montagnier L,  Hovanessian AG, et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol 1998; 72(5): 3872–86.
PubMed |

[95] Gueye A,  Diop OM,  Ploquin MJ,  Kornfeld C,  Faye A,  Cumont MC, et al. Viral load in tissues during the early and chronic phase of non-pathogenic SIVagm infection. J Med Primatol 2004; 33(2): 83–97.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[96] Kanki PJ,  Barin F,  M’Boup S,  Allan JS,  Romet-Lemonne JL,  Marlink R, et al. New human T-lymphotropic retrovirus related to simian T-lymphotropic virus type III (STLV-IIIAGM). Science 1986; 232(4747): 238–43.
PubMed |

[97] Kanki PJ,  Hopper JR,  Essex M. The origins of HIV-1 and HTLV-4/HIV-2. Ann N Y Acad Sci 1987; 511 370–5.
PubMed |

[98] Fultz PN,  Stricker RB,  McClure HM,  Anderson DC,  Switzer WM,  Horaist C. Humoral response to SIV/SMM infection in macaque and mangabey monkeys. J Acquir Immune Defic Syndr 1990; 3(4): 319–29.
PubMed |

[99] Gao F,  Yue L,  White AT,  Pappas PG,  Barchue J,  Hanson AP, et al. Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature 1992; 358(6386): 495–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[100] Gao F,  Bailes E,  Robertson DL,  Chen Y,  Rodenburg CM,  Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999; 397(6718): 436–41.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[101] Zhu T,  Korber BT,  Nahmias AJ,  Hooper E,  Sharp PM,  Ho DD. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 1998; 391(6667): 594–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[102] Price DA,  West SM,  Betts MR,  Ruff LE,  Brenchley JM,  Ambrozak DR, et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 2004; 21(6): 793–803.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[103] Allen TM,  Altfeld M,  Yu XG,  O'Sullivan KM,  Lichterfeld M,  Le Gall S, et al. Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection. J Virol 2004; 78(13): 7069–78.
Crossref | GoogleScholarGoogle Scholar | PubMed |