Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Middle to Late Paleocene Leguminosae fruits and leaves from Colombia

Fabiany Herrera https://orcid.org/0000-0002-2412-672X A B D , Mónica R. Carvalho B , Scott L. Wing C , Carlos Jaramillo B and Patrick S. Herendeen A
+ Author Affiliations
- Author Affiliations

A Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA.

B Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá.

C Department of Paleobiology, NHB121, PO Box 37012, Smithsonian Institution, Washington, DC 20013, USA.

D Corresponding author. Email: fherrera@chicagobotanic.org

Australian Systematic Botany 32(6) 385-408 https://doi.org/10.1071/SB19001
Submitted: 10 January 2019  Accepted: 5 April 2019   Published: 30 September 2019

Journal Compilation © CSIRO 2019 Open Access CC BY-NC-ND

Abstract

Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago.

Additional keywords: diversity, Fabaceae, fossil plants, legumes, Neotropics, South America.


References

Agarwal A (2008) Angiospermous fossil fruits/seeds during Tertiary in India. Palaeobotanist 57, 165–175.

Ambwani K, Kar RK (2000) Occurrence of Anonidium-like pollen in the Tura formation (Palaeocene) of Meghalaya, India. Palaeobotanist 49, 219–223.

Bayona G, Cortes M, Jaramillo C, Ojeda G, Aristizabal JJ, Reyes-Harker A (2008) An integrated analysis of an orogeny–sedimentary basin pair: latest Cretaceous–Cenozoic evolution of the linked eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geological Society of America Bulletin 120, 1171–1197.
An integrated analysis of an orogeny–sedimentary basin pair: latest Cretaceous–Cenozoic evolution of the linked eastern Cordillera orogen and the Llanos foreland basin of Colombia.Crossref | GoogleScholarGoogle Scholar |

Bayona G, Montenegro O, Cardona A, Jaramillo CA, Lamus F, Morón S, Quiroz L, Ruíz MC, Valencia V, Parra M, Stockli D (2010) Estratigrafía, procedencia, subsidencia y exhumación de las unidades Paleógenas en el Sinclinal de Usme, sur de la zona axial de la Cordillera Oriental. Geología Colombiana 35, 5–35.

Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97, 1296–1303.
The age and diversification of the angiosperms re‐revisited.Crossref | GoogleScholarGoogle Scholar | 21616882PubMed |

Bhattacharyya B (1985) Leguminous fruits from the Eocene of Garo Hills, Meghalaya. Quarterly Journal of the Geological, Mining and Metallurgical Society of India 57, 215–225.

Brea M, Zamuner AB, Matheos SD, Iglesias A, Zucol AF (2008) Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. Alcheringa 32, 427–441.
Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86, 697–718.
Phylogenetic patterns and diversification in the caesalpinioid legumes.Crossref | GoogleScholarGoogle Scholar |

Cantrill DJ, Bamford MK, Wagstaff BE, Sauquet H (2013) Early Eocene fossil plants from the Mwadui kimberlite pipe, Tanzania. Review of Palaeobotany and Palynology 196, 19–35.
Early Eocene fossil plants from the Mwadui kimberlite pipe, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Carvalho MR, Herrera F, Jaramillo CA, Wing SL, Callejas R (2011) Paleocene Malvaceae from northern South America and their biogeographical implications. American Journal of Botany 98, 1337–1355.
Paleocene Malvaceae from northern South America and their biogeographical implications.Crossref | GoogleScholarGoogle Scholar | 21821594PubMed |

Collinson ME, Manchester SR, Wilde V (2012) Fossil fruits and seeds of the middle Eocene Messel biota, Germany. Abhandlungen Senckenberg Gesellschaft für Naturforschung 570, 1–251.

Crepet WL, Herendeen PS (1992) Papilionoid flowers from the Early Eocene of southwestern North America. In ‘Advances in Legume Systematics: Part 4, the Fossil Record’. (Eds PS Herendeen, DL Dilcher) pp. 45–55. (Royal Botanic Gardens, Kew: London, UK)

Crepet WL, Taylor DW (1985) The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionoideae. Science 228, 1087–1089.
The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionoideae.Crossref | GoogleScholarGoogle Scholar | 17737903PubMed |

Crepet WL, Taylor DW (1986) Primitive mimosoid flowers from the Paleocene–Eocene and their systematic and evolutionary implications. American Journal of Botany 73, 548–563.
Primitive mimosoid flowers from the Paleocene–Eocene and their systematic and evolutionary implications.Crossref | GoogleScholarGoogle Scholar |

Dilcher DL, Lott TA, Gibson MA, Dudley C (2014) An extinct caesalpinoid flower from the Eocene of western Tennessee. In ‘Paleobotany and Biogeography, A Festschrift for Alan Graham in His 80th Year’. (Eds WD Stevens, OM Montiel, PH Raven) pp. 51–63. (Missouri Botanical Garden Press: Saint Louis, MO, USA)

Doria G, Jaramillo CA, Herrera F (2008) Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia. American Journal of Botany 95, 954–973.
Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia.Crossref | GoogleScholarGoogle Scholar | 21632418PubMed |

Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiology 131, 900–910.
The rest of the iceberg. Legume diversity and evolution in a phylogenetic context.Crossref | GoogleScholarGoogle Scholar | 12644643PubMed |

Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) ‘Manual of Leaf Architecture.’ (Cornell University Press: Ithaca, NY, USA)

Epihov DZ, Batterman SA, Hedin LO, Leake JR, Smith LM, Beerling DJ (2017) N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic? Proceedings of the Royal Society of London – B. Biological Sciences 284, 20170370
N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?Crossref | GoogleScholarGoogle Scholar |

Gomez-Navarro C, Jaramillo CA, Herrera F, Wing SL, Callejas R (2009) Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany 96, 1300–1312.
Palms (Arecaceae) from a Paleocene rainforest of northern Colombia.Crossref | GoogleScholarGoogle Scholar | 21628279PubMed |

Gunn CR (1984) Fruits and seeds of genera in the subfamily Mimosoideae (Fabaceae). USDA Technical Bulletin 1681, Beltsville, MD, USA.

Gunn CR (1991) Fruits and seeds of genera in the subfamily Caesalpinioideae (Fabaceae). USDA Technical Bulletin 1755, Beltsville, MD, USA.

Herendeen PS (1992) The fossil history of the Leguminosae from the Eocene of southeastern North America. In ‘Advances in Legume Systematics: Part 4, the Fossil Record’. (Eds PS Herendeen, DL Dilcher) pp. 85–160. (Royal Botanic Gardens, Kew: London, UK)

Herendeen PS, Crane PR (1992) Early caesalpinioid fruits from the Paleogene of southern England. In ‘Advances in Legume Systematics: Part 4, the Fossil Record’. (Eds PS Herendeen, DL Dilcher) pp. 57–68. (Royal Botanic Gardens, Kew: London, UK)

Herendeen PS, Dilcher DL (1990) Fossil mimosoid legumes from the Eocene and Oligocene of southeastern North America. Review of Palaeobotany and Palynology 62, 339–361.
Fossil mimosoid legumes from the Eocene and Oligocene of southeastern North America.Crossref | GoogleScholarGoogle Scholar |

Herendeen PS, Jacobs BF (2000) Fossil legumes from the middle Eocene (46.0 Ma) Mahenge flora of Singida, Tanzania. American Journal of Botany 87, 1358–1366.
Fossil legumes from the middle Eocene (46.0 Ma) Mahenge flora of Singida, Tanzania.Crossref | GoogleScholarGoogle Scholar | 10991905PubMed |

Herendeen PS, Crepet WL, Dilcher DL (1992) The fossil history of the Leguminosae: phylogenetic and biogeographic implications. In ‘Advances in Legume Systematics: Part 4, the Fossil Record’. (Eds PS Herendeen, DL Dilcher) pp. 303–316. (Royal Botanic Gardens, Kew: London, UK)

Herrera F, Jaramillo CA, Dilcher DL, Wing SL, Gómez-Navarro C (2008) Fossil Araceae from a Paleocene neotropical rainforest in Colombia. American Journal of Botany 95, 1569–1583.
Fossil Araceae from a Paleocene neotropical rainforest in Colombia.Crossref | GoogleScholarGoogle Scholar | 21628164PubMed |

Herrera F, Manchester SR, Hoot SB, Wefferling K, Carvalho MR, Jaramillo CA (2011) Phytogeographic Implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. American Journal of Botany 98, 2004–2017.
Phytogeographic Implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia.Crossref | GoogleScholarGoogle Scholar | 22114219PubMed |

Herrera F, Manchester SR, Carvalho MR, Jaramillo CA, Wing SL (2014) Fossil wind-dispersed fruits and seeds from the Paleocene of Colombia and their implications for early Neotropical rainforests. Acta Palaeobotanica 54, 197–229.
Fossil wind-dispersed fruits and seeds from the Paleocene of Colombia and their implications for early Neotropical rainforests.Crossref | GoogleScholarGoogle Scholar |

Iglesias A, Wilf P, Johnson KR, Zamuner AB, Cúneo NR, Matheos SD, Singer BS (2007) A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35, 947–950.
A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs.Crossref | GoogleScholarGoogle Scholar |

Jacobs BF, Herendeen PS (2004) Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 115–123.
Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania.Crossref | GoogleScholarGoogle Scholar |

Jaramillo CA, Bayona G, Pardo-Trujillo A, Rueda M, Torres V, Harrington GJ, Mora G (2007) The palynology of the Cerrejón Formation (upper Paleocene) of northern Colombia. Palynology 31, 153–189.

Jaramillo CA, Rueda M, Torres V (2011) A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. Palynology 35, 46–84.
A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia.Crossref | GoogleScholarGoogle Scholar |

Jia H, Manchester SR (2014) Fossil leaves and fruits of Cercis L.(Leguminosae) from the Eocene of western North America. International Journal of Plant Sciences 175, 601–612.
Fossil leaves and fruits of Cercis L.(Leguminosae) from the Eocene of western North America.Crossref | GoogleScholarGoogle Scholar |

Kirkbride JH, Gunn CR, Weitzman AL (2003) Fruits and seeds of genera in the subfamily Faboideae (Leguminosae). USDA Technical Bulletin 1890 Vol. 1, 2, Beltsville, MD, USA.

Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology 54, 575–594.
Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary.Crossref | GoogleScholarGoogle Scholar | 16085576PubMed |

Legume Phylogeny Working Group (2013a) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62, 217–248.
Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades.Crossref | GoogleScholarGoogle Scholar |

Legume Phylogeny Working Group (2013b) Towards a new classification system for legumes: progress report from the 6th international legume conference. South African Journal of Botany 89, 3–9.
Towards a new classification system for legumes: progress report from the 6th international legume conference.Crossref | GoogleScholarGoogle Scholar |

Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77.
A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny.Crossref | GoogleScholarGoogle Scholar |

Lewis G, Schrire B, Mackinder B, Lock M (2005) ‘Legumes of the World.’ (Royal Botanic Gardens, Kew: London, UK)

Magallón S, Gómez‐Acevedo S, Sánchez‐Reyes LL, Hernández‐Hernández T (2015) A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207, 437–453.
A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity.Crossref | GoogleScholarGoogle Scholar | 25615647PubMed |

Mehrotra RC (2000) Study of plant megafossils from the Tura Formation of Nangwalbibra, Garo Hills, Meghalaya, India. Palaeobotanist 49, 225–237.

Monga PR, Srivastava GA, Kumar M, Mehrotra RC (2014) Further palynological investigation of coaliferous sequences of Tura Formation of Nangwalbibra, East Garo Hills, Meghalaya: inferences on palaeovegetation and palaeoclimate. Palaeobotanist 63, 79–85.

Morón S, Fox DL, Feinberg JM, Jaramillo C, Bayona G, Montes C, Bloch JI (2013) Climate change during the Early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism. Palaeogeography, Palaeoclimatology, Palaeoecology 388, 115–127.
Climate change during the Early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism.Crossref | GoogleScholarGoogle Scholar |

Phillips O, James M, Gentry A (2002) ‘Global Patterns of Plant Diversity: Alwyn H. Gentry’s Forest Transect Data Set.’ (Missouri Botanical Garden Press: Saint Louis, MO, USA)

Saxena RK, Tripathi SKM, Prasad V (1996) Palynofloral investigation of the Tura Formation (Palaeocene) in Nongwal Bibra area, East Garo Hills, Meghalaya. Geophytology 26, 19–31.

Schrire BD, Lavin M, Lewis GP (2005a) Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biologiske Skrifter 55, 375–422.

Schrire BD, Lewis GP, Lavin M (2005b) Biogeography of the Leguminosae. In ‘Legumes of the World’. (Eds G Lewis, B Schrire, B Mackinder, M Lock) pp. 21–54. (Royal Botanic Gardens, Kew: London, UK)

Scotese CR (2001) ‘Paleogeographic Atlas. Earth System History Geographic Information System, Version 02b.’ (PALEOMAP Project: Arlington, TX, USA)

Senesse S, Gruas-Cavagnetto C (1990) Caesalpinieaepollenites (Caesalpinioideae, Légumineuse), une nouvelle forme de genre dans l’Eocène inférieur du Bassin de Paris. Position systématique et phylogénétique. Review of Palaeobotany and Palynology 66, 13–24.
Caesalpinieaepollenites (Caesalpinioideae, Légumineuse), une nouvelle forme de genre dans l’Eocène inférieur du Bassin de Paris. Position systématique et phylogénétique.Crossref | GoogleScholarGoogle Scholar |

Shukla A, Mehrotra RC (2016) Early Eocene (~50 My) legume fruits from Rajasthan. Current Science 111, 465–467.

Srivastava RA (2011) Indian upper Cretaceous–Tertiary flora before collision of Indian Plate: a reappraisal of central and western Indian flora. Memoir of the Geological Society of India 77, 281–292.

Stull GW, Herrera F, Manchester SR, Jaramillo C, Tiffney BH (2012) Fruits of an ‘Old World’ tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Systematic Botany 37, 784–794.
Fruits of an ‘Old World’ tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America.Crossref | GoogleScholarGoogle Scholar |

Tripathi SKM, Saxena RK, Prasad V (2000) Palynological investigation of the Tura Formation (Early Eocene) exposed along the Tura–Dalu road, West Garo Hills, Meghalaya, India. Palaeobotanist 49, 239–251.

Wikström N, Savolainen V, Chase MW (2004) Angiosperm divergence times: congruence and incongruence between fossils and sequence divergence estimates. Systematics Association Special Volume 66, 142–165.

Wilf P, Cúneo NR, Johnson KR, Hicks JF, Wing SL, Obradovich JD (2003) High plant diversity in Eocene South America: evidence from Patagonia. Science 300, 122–125.
High plant diversity in Eocene South America: evidence from Patagonia.Crossref | GoogleScholarGoogle Scholar | 12677065PubMed |

Wing SL, Currano ED (2013) Plant response to a global greenhouse event 56 million years ago. American Journal of Botany 100, 1234–1254.
Plant response to a global greenhouse event 56 million years ago.Crossref | GoogleScholarGoogle Scholar | 23825133PubMed |

Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Paleocene–Eocene boundary. Science 310, 993–996.
Transient floral change and rapid global warming at the Paleocene–Eocene boundary.Crossref | GoogleScholarGoogle Scholar | 16284173PubMed |

Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CC (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America 106, 18627–18632.
Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest.Crossref | GoogleScholarGoogle Scholar | 19833876PubMed |

Xu Q, Qiu J, Zhou Z, Jin J (2015) Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications. Frontiers of Plant Science 6, 938
Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications.Crossref | GoogleScholarGoogle Scholar |

Yahara T, Javadi F, Onoda Y, de Queiroz LP, Faith D, Prado DE, Akasaka M, Kadoya T, Ishihama F, Davies S, Slik JWF, Yi T, Ma K, Bin C, Darnaedi D, Pennington RT, Tuda M, Shimada M, Ito M, Egan AN, Buerki S, Raes N, Kajita T, Vatanparast M, Mimura M, Tachida H, Iwasa Y, Smith GF, Victor JE, Nkonki T (2013) Global legume diversity assessment: concepts, key indicators, and strategies. Taxon 62, 249–266.
Global legume diversity assessment: concepts, key indicators, and strategies.Crossref | GoogleScholarGoogle Scholar |