Phylogenetics of hopbushes and pepperflowers (Dodonaea, Diplopeltis – Sapindaceae), based on nuclear ribosomal ITS and partial ETS sequences incorporating secondary-structure models
Mark G. Harrington A B C and Paul A. Gadek A BA School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia.
B Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia.
C Corresponding author. Email: Mark.Harrington@jcu.edu.au
Australian Systematic Botany 23(6) 431-442 https://doi.org/10.1071/SB10002
Submitted: 18 January 2010 Accepted: 25 October 2010 Published: 23 December 2010
Abstract
Hopbushes and pepperflowers (Dodonaea, Diplopeltis – Sapindaceae) are important components of Australia’s arid zone and sclerophyll and temperate forests and woodlands. Phylogenetic analyses of nuclear ribosomal ITS and partial ETS sequences for near-complete sampling of both genera were performed using a Bayesian statistical method and RNA specific models of nucleotide evolution that incorporate secondary structure (separate models for stems and loops). Diplopeltis is paraphyletic. Diplopeltis stuartii is not closer to other species of the genus than it is to species outside the genus. There are also several evolutionary elements in the molecular data that support D. stuartii as distinct from the other members of the genus. The monophyly of Dodonaea as redefined here to include all species of Distichostemon is unequivocally supported by the molecular data and the morphological synapomorphies of petal-less flowers with a highly reduced intrastaminal disk that is absent in staminate flowers. There do not appear to be any obvious evolutionary trends in the morphological characters (leaf and capsule form, presence or absence of aril, or breeding system) that have been previously used to group taxa. However, there are some morphological characters that may be useful to delineate some of the clades recovered in the present molecular study. New combinations in Dodonaea are made for all species of Distichostemon.
References
Bentham G (1863) ‘Flora Australiensis.’ (Lorel Reeve and Co.: London)Bentham G, Hooker JD (1862) Sapindaceae. In ‘Genera plantarum’. pp. 388–413. (Lorel Reeve and Co.: London)
Biffin E, Harrington MG, Crisp MD, Craven LA, Gadek PA (2007) Structural partitioning, paired-site models and evolution of the ITS rDNA in Syzygium and Myrtaceae. Molecular Phylogenetics and Evolution 43, 124–139.
| Structural partitioning, paired-site models and evolution of the ITS rDNA in Syzygium and Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGrsrs%3D&md5=19790f683084249e480a271a652cf900CAS | 17070713PubMed |
Brizicky GE (1963) The genera of Sapindales in the southeastern United States. Journal of the Arnold Arboretum. Arnold Arboretum 44, 462–501.
Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA divergent paralogues and phylogenetic implications. Genetics 145, 821–832.
Buerki S, Forest F, Acevedo-Rodriguez P, Callmander MW, Nylander JA, Harrington MG, Sanmartin I, Kupfer P, Alvarez N (2009) Plastid and nuclear markers reveal intricate relationships at subfamilial and tribal in the soapberry family (Sapindaceae). Molecular Phylogenetics and Evolution 51, 238–258.
| Plastid and nuclear markers reveal intricate relationships at subfamilial and tribal in the soapberry family (Sapindaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFemtbo%3D&md5=16364dc2cab405cbef58bb7bba53d1a8CAS | 19405193PubMed |
Corner EJ (1976) ‘The seeds of dicotyledons.’ (Cambridge University Press: Cambridge, UK)
Delphino F (1890) Note ed osservazioni botaniche. Decuria seconde. Malpighia 4, 3–33.
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.
Endlicher SF (1837) Diplopeltis. In ‘Enumeratio plantarum quas in Novae Hollandiae ora austro-occidentali ad Fluvium Cygnorum et in Sinu Regis Georgii collegit Carolus liber baro de Hügel’. (Eds SF Endlicher, G Bentham, E Fenzi, H Schott) pp. 12–13. (F. Beck: Vienna)
George AS, Erdtman G (1969) A revision of the genus Diplopeltis Endl. (Sapindaceae). Grana Palynologica 9, 92–109.
| A revision of the genus Diplopeltis Endl. (Sapindaceae).Crossref | GoogleScholarGoogle Scholar |
Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
| A simple, fast, and accurate algorithm to estimate phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
Harrington GN, Driver MA (1995) The effect of fire and ants on the seed-bank of a shrub in a semi-arid grassland. Australian Journal of Ecology 20, 538–547.
| The effect of fire and ants on the seed-bank of a shrub in a semi-arid grassland.Crossref | GoogleScholarGoogle Scholar |
Harrington MG, Gadek PA (2004) Molecular systematics of the Acmena alliance (Myrtaceae): phylogenetic analyses and evolutionary implications with reference to Australian taxa. Australian Systematic Botany 17, 63–72.
| Molecular systematics of the Acmena alliance (Myrtaceae): phylogenetic analyses and evolutionary implications with reference to Australian taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFCgt74%3D&md5=5415f7b403d01685d7110b7e5c90ab74CAS |
Harrington MG, Gadek PA (2009) A species well travelled – the Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences. Journal of Biogeography 36, 2313–2323.
| A species well travelled – the Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences.Crossref | GoogleScholarGoogle Scholar |
Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA (2005) Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. Systematic Botany 30, 366–382.
| Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences.Crossref | GoogleScholarGoogle Scholar |
Harrington MG, Biffin E, Gadek PA (2009) Comparative study of the evolution of nuclear ribosomal spacers incorporating secondary structure analyses within Dodonaeoideae, Hippocastanoideae and Xanthoceroideae (Sapindaceae). Molecular Phylogenetics and Evolution 50, 364–375.
| Comparative study of the evolution of nuclear ribosomal spacers incorporating secondary structure analyses within Dodonaeoideae, Hippocastanoideae and Xanthoceroideae (Sapindaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGqtA%3D%3D&md5=2f8f45d15e2f9c266e6b799a86f2845eCAS | 19056501PubMed |
Higgs PG (2000) RNA secondary structure: physical and computational aspects. Quarterly Reviews of Biophysics 33, 199–253.
| RNA secondary structure: physical and computational aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFGmur0%3D&md5=7b1489f941129e2bfa21ac86ee965738CAS | 11191843PubMed |
Keighery GJ (1982) Pollination syndromes and breeding systems. In ‘Evolution of the flora and fauna of arid Australia’. (Eds WR Barker, PJ Greenslade) pp. 167–172. (Peacock: Adelaide)
Leenhouts PW (1983) Notes on the extra-Australian species of Dodonaea (Sapindaceae). Blumea 28, 271–289.
Leenhouts PW, Vente M (1982) A taxonomic revision of Harpullia (Sapindaceae). Blumea 28, 1–51.
Maddison WP, Maddison DR (2002) ‘MacClade 4: interactive analysis of phylogeny and character evolution.’ (Sinauer Associates: Sunderland, MA)
Miquel FA (1844) Observations de plantis Novae Hollandiae et Novae Zeelandiae. Linnaea 18, 83–95.
Mueller F (1857) On some new genera of Australian plants. Hooker’s Journal of Botany and Kew Gardens Miscellany 9, 302–310.
Mueller F (1862) ‘The plants indigenous to the colony of Victoria, I. Thalamiflorae.’ (Government Printer: Melbourne)
Mueller F (1863a) Additamenta ad volumen tertium. Fragmenta Phytographiae Australiae 3, 167
Mueller F (1863b) Sapindaceae. Fragmenta Phytographiae Australiae 3, 12–13.
Müller J, Leenhouts PW (1976) A general survey of pollen types in Sapindaceae in relation to taxonomy. In ‘The evolutionary significance of the exine’. (Eds IK Ferguson, J Müller) pp. 407–445. (Academic Press: London)
Nylander JA (2004) ‘MrAIC.pl.’ Program distributed by the author. (Evolutionary Biology Centre, Uppsala University: University, Sweden)
Radlkofer L (1933) Sapindaceae. In ‘Das Pflanzenreich, IV, 165 (Heft 98a-h)’. (Ed. A Engler) pp. 1–1539. (Verlag von Wilhelm Engelmann: Leipzig, Germany)
Reddi CS, Bai AJ, Reddi EU, Raju KV (1980) Pollen productivity, release and dispersal in Dodonaea viscosa (Linn.) Jacq. Proceedings of the Indian National Science Academy B46, 184–190.
Savill NJ, Hoyle DC, Higgs PG (2001) RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum likelihood methods. Genetics 157, 399–411.
Shepherd KA, Rye BL, Meissner RA, West JG (2007) Two new Western Australian species of Dodonaea (Sapindaceae) from northern Yilgarn ironstones. Nuytsia 17, 375–384.
Sherff EE (1945) Some additions to the genus Dodonaea L. (Sapindaceae). American Journal of Botany 32, 202–214.
| Some additions to the genus Dodonaea L. (Sapindaceae).Crossref | GoogleScholarGoogle Scholar |
Sherff EE (1947) Further studies on the genus Dodonaea L. (family Sapindaceae). Field Museum Natural History Botanical Series 23, 269–317.
Soltis DE, Soltis PS, Endress PK, Chase MW (2005) ‘Phylogeny and evolution of angiosperms.’ (Sinauer Associates: Sunderland, MA)
Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89, 26–32.
| Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFWkt7k%3D&md5=16834b6c2fdd411c539da83db6385130CAS |
Telford MJ, Wise MJ, Gowri-Shankar V (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the Bilateria. Molecular Biology and Evolution 22, 1129–1136.
| Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the Bilateria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFaisbc%3D&md5=da8b7c9a4f587bfcd68c11e28faa0ec8CAS | 15689526PubMed |
West JG (1980) A taxonomic revision of Dodonaea (Sapindaceae) in Australia. PhD Thesis, University of Adelaide.
West JG (1982) Radiation and adaptation of Dodonaea (Sapindaceae) in arid Australia. In ‘Evolution of the flora and fauna of arid Australia’. (Eds WR Barker, PJ Greenslade) pp. 329–333. (Peacock: Adelaide)
West JG (1984) A revision of Dodonaea Miller (Sapindaceae) in Australia. Brunonia 7, 1–194.
| A revision of Dodonaea Miller (Sapindaceae) in Australia.Crossref | GoogleScholarGoogle Scholar |
West JG (1987) Dodonaea biloba (Sapindaceae), a new species from south-eastern Queensland, Australia. Brunonia 10, 219–223.
| Dodonaea biloba (Sapindaceae), a new species from south-eastern Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds MD Innis, D Gelfand, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA)
Wright SD, Yong CG, Wichman SR, Dawson JW, Gardner RC (2001) Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS + ETS). Journal of Biogeography 28, 769–774.
Wolf M, Friedrich J, Dandekar T, Muller T (2005) CBCAnalyzer: inferring phylogenies based on compensatory base changes in RNA secondary structures. In Silico Biology 5, 291–294.