Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Splitting Caldesia in favour of Albidella (Alismataceae)

Samuli Lehtonen
+ Author Affiliations
- Author Affiliations

Biodiversity Unit, University of Turku, FI-20014 Turku, Finland. Email: samile@utu.fi

Australian Systematic Botany 30(1) 64-69 https://doi.org/10.1071/SB16050
Submitted: 22 March 2016  Accepted: 21 February 2017   Published: 31 May 2017

Abstract

Phylogenetic analyses based on 10 molecular markers unquestionably support a sister relationship between Albidella nymphaeifolia and the Caldesia oligococca species group. The type species of the genus Caldesia is excluded from this monophylum. These results are unsurprising in the light of morphological characteristics, but require three new combinations in Albidella to render both Albidella and Caldesia monophyletic. These new combinations are provided here. Under the new circumscription, Albidella shows a disjunct distribution pattern, with one species in the Caribbean region and three species distributed from tropical Africa and along the margins of the Indian Ocean to Australia.


References

Chen L-Y, Chen J-M, Gituru RW, Temam TD, Wang Q-F (2012) Generic phylogeny and historical biogeography of Alismataceae, inferred from multiple DNA sequences. Molecular Phylogenetics and Evolution 63, 407–416.
Generic phylogeny and historical biogeography of Alismataceae, inferred from multiple DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Cuenca A, Ross TG, Graham SW, Barrett CF, Davis JI, Seberg O, Petersen G (2016) Localized retroprocessing as a model of intron loss in the plant mitochondrial genome. Genome Biology and Evolution 8, 2176–2189.
Localized retroprocessing as a model of intron loss in the plant mitochondrial genome.Crossref | GoogleScholarGoogle Scholar |

Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, Freudenstein JV, Goldman DH, Hardy CR, Michelangeli FA, Simmons MP, Specht CD, Vergara-Silva F, Gandolfo M (2004) A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Systematic Botany 29, 467–510.
A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values.Crossref | GoogleScholarGoogle Scholar |

den Hartog C (1957) Alismataceae. In ‘Flora Malesiana Ser.1 Vol.5’. (Ed. CGGJ Van Steenis) pp. 317–334. (Noordhoff-Kolff N.V.: Jakarta, Indonesia)

Dunning LT, Savolainen V (2010) Broad-scale amplification of matK for DNA barcoding plants, a technical note. Botanical Journal of the Linnean Society 164, 1–9.
Broad-scale amplification of matK for DNA barcoding plants, a technical note.Crossref | GoogleScholarGoogle Scholar |

Fay MF, Swensen SM, Chase MW (1997) Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bulletin 52, 111–120.
Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae).Crossref | GoogleScholarGoogle Scholar |

Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Haggard KK, Tiffney BH (1997) The flora of the early Miocene Brandon Lignite, Vermont, USA. VIII. Caldesia (Alismataceae). American Journal of Botany 84, 239–252.
The flora of the early Miocene Brandon Lignite, Vermont, USA. VIII. Caldesia (Alismataceae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnktFyjtw%3D%3D&md5=7c70fe2e41965785ee3e731bf697ff00CAS |

Haynes RR, Holm-Nielsen LB (1994) The Alismataceae. Flora Neotropica Monograph 64, 1–112.

Hutchinson J (1959) ‘The Families of Flowering Plants. Monocotyledons, vol. 2.’ (Clarendon Press: Oxford, UK)

Jacobs SWL (2004) Lectotypification of Alisma oligococcum F.Muell. (Alismataceae). Telopea 10, 839

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=69a56324c7a2902c7105c236f0fe37c7CAS |

Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38, 7–25.
A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes).Crossref | GoogleScholarGoogle Scholar |

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=532fc89a8daa4cb8fe879999a2ec293fCAS |

Lehtonen S (2009) Systematics of the Alismataceae – a morphological evaluation. Aquatic Botany 91, 279–290.
Systematics of the Alismataceae – a morphological evaluation.Crossref | GoogleScholarGoogle Scholar |

Lehtonen S, Myllys L (2008) Cladistic analysis of Echinodorus (Alismataceae): simultaneous analysis of molecular and morphological data. Cladistics 24, 218–239.
Cladistic analysis of Echinodorus (Alismataceae): simultaneous analysis of molecular and morphological data.Crossref | GoogleScholarGoogle Scholar |

Les DH, Tippery NP (2013) In time and with water … the systematics of alismatid monocotyledons. In ‘Early Events in Monocot Evolution’. (Eds P Wilkin, SJ Mayo) pp. 118–164. (Cambridge University Press: New York, NY, USA)

Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany 22, 443–463.
Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily.Crossref | GoogleScholarGoogle Scholar |

Lot AH, Novelo AR (1994) Alismataceae. In ‘Flora Mesoamericana. Vol. 6. Alismataceae a Cyperaceae’. (Eds G Davidse, MS Sousa, AO Chater) pp. 3–8. (Universidad Nacional Autónoma de México, Missouri Botanical Garden and The Natural History Museum: London, UK)

Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
The parsimony ratchet, a new method for rapid parsimony analysis.Crossref | GoogleScholarGoogle Scholar |

Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany 81, 1205–1225.
Chloroplast DNA systematics: a review of methods and data analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVCntA%3D%3D&md5=c9e37435c70cb00710d4187f9778c3e3CAS |

Petersen G, Seberg O, Davis JI, Stevenson DW (2006) RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. Taxon 55, 871–886.
RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes.Crossref | GoogleScholarGoogle Scholar |

Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S, Ross TG (2016) Phylogeny of Alismatales (monocotyledons) and the relationship of Acorus (Acorales?). Cladistics 32, 141–159.
Phylogeny of Alismatales (monocotyledons) and the relationship of Acorus (Acorales?).Crossref | GoogleScholarGoogle Scholar |

Pichon M (1946) Sur les Alismatacées et les Butomacées. Notulae Systematicae, Herbier du Museum de Paris. Phanerogramie, Paris 12, 170–183.

Rataj K (1975) Revizion of the genus Echinodorus Rich. Studie Čsav 2, 1–156.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Ross TG, Barrett CF, Gomez MS, Lam VKY, Henriquez CL, Les DH, Davis JI, Cuenca A, Petersen G, Seberg O, Thadeo M, Givnish TJ, Conran J, Stevenson DW, Graham SW (2016) Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32, 160–178.
Plastid phylogenomics and molecular evolution of Alismatales.Crossref | GoogleScholarGoogle Scholar |

Symoens J-J (1984) Alismataceae. Flore du Cameroun 26, 3–26.