Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

The Lejeunea tumida species group is positively polyphyletic (Lejeuneaceae: Jungermanniopsida)

Matt A. M. Renner A , Elizabeth A. Brown A C and Glenda M. Wardle B
+ Author Affiliations
- Author Affiliations

A National Herbarium of New South Wales, Mrs Macquaries Road, Sydney, NSW 2000, Australia.

B School of Biological Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia.

C Corresponding author. Email: Elizabeth.Brown@rbgsyd.nsw.gov.au

Australian Systematic Botany 24(1) 10-18 https://doi.org/10.1071/SB10047
Submitted: 26 October 2010  Accepted: 18 February 2011   Published: 29 April 2011

Abstract

A phylogeny based on nrITS1 and trnL–F sequences resolves the Lejeunea tumida species group polyphyletic with individuals belonging in two clades either side of the basal-most node within Lejeunea. It is impossible for the Lejeunea tumida species group to be more polyphyletic and still be attributed to the same genus under the existing generic classification. A simulation-based approach to testing the null hypothesis of group monophyly rejects this at the P < 0.01 level of significance. Bayesian tests find very strong support for polyphyly, given the data. The monophyly of L. tumida s.s. + L. colensoana is fully supported; however, although Lejeunea tumida s.s. is nested within L. colensoana, this position is not supported. Both L. oracola and L. rhigophila are resolved as monophyletic. Whereas there is moderate support for the monophyly of L. rhigophila, there is no support for the monophyly of L. oracola. Neither is the monophyly of L. oracola + L. rhigophila supported in Bayesian or parsimony analysis.


References

Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29, 417–434.
Ribosomal ITS sequences and plant phylogenetic inference.Crossref | GoogleScholarGoogle Scholar | 14615184PubMed |

Avise JC, Shapiro JF, Daniel SW, Aquadro CF, Lansman RA (1983) Mitochondrial DNA differentiation during the speciation process in Peromyscus. Molecular Biology and Evolution 1, 38–56.

Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.

Baum DA (1992) Phylogenetic species concepts. Trends in Ecology & Evolution 7, 1–2.
Phylogenetic species concepts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itVKlsA%3D%3D&md5=b16e6e7a351a2dd51c9c1be14a280b29CAS |

Bischler H, Boisselier–Dubayle MC, Fontinha S, Lambourdiere J (2006) Species boundaries in European and Macaronesian Porella L. (Jungermanniales, Porellaceae). Cryptogamie, Bryologie 27, 35–57.

Burghardt M, Gradstein SR (2008) Chapter eighteen: a revision of Tylimanthus (Acrobolbaceae, Marcahntiophyta) in Tropical America, Africa and Macaronesia. Fieldiana Botany 47, 199–210.
Chapter eighteen: a revision of Tylimanthus (Acrobolbaceae, Marcahntiophyta) in Tropical America, Africa and Macaronesia.Crossref | GoogleScholarGoogle Scholar |

Camacho FJ, Gernandt DS, Liston A, Stone JK, Klein AS (1997) Endophytic fungal DNA, the source of contamination in spruce needle DNA. Molecular Ecology 6, 983–987.
Endophytic fungal DNA, the source of contamination in spruce needle DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVGksrw%3D&md5=6d088c37f0ff4ef3bd8a8dac54fe8527CAS |

Chiang TY, Schaal BA (1999) Phylogeography of North American populations of the moss species Hylocomuim splendens based on the nucleotide sequence of internal transcribed spacer 2 of nuclear ribosomal DNA. Molecular Ecology 8, 1037–1042.
Phylogeography of North American populations of the moss species Hylocomuim splendens based on the nucleotide sequence of internal transcribed spacer 2 of nuclear ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVOnsL4%3D&md5=da5adb0da665564dd0f7f967fce9a6cbCAS |

Crisp MD, Chandler GT (1996) Paraphyletic species. Telopea 6, 813–844.

de Queiroz K (1998) The general lineage concept of species. In ‘Endless forms. Species and speciation’. (Eds DJ Howard, SH Berlocher) pp. 57–75. (Oxford University Press: Oxford, UK)

De Roo RT, Hedderson TA, Söderström L (2007) Molecular insights into the phylogeny of the leaf liverwort family Lophoziaceae Cavers. Taxon 56, 301–314.

Doyle JJ (1992) Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17, 144–163.
Gene trees and species trees: molecular systematics as one-character taxonomy.Crossref | GoogleScholarGoogle Scholar |

Draper IL, Hedenäs L, Grimm GW (2007) Molecular and morphological incongruence in European species of Isothecium (Bryophyta). Molecular Phylogenetics and Evolution 42, 700–716.
Molecular and morphological incongruence in European species of Isothecium (Bryophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVCns7c%3D&md5=25bcd89c3f2b634e4273da7f4651f783CAS | 17101281PubMed |

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=85c390731ce065d1d5ee2a9c5157c2a5CAS | 15034147PubMed |

Feldberg K, Hienrichs J (2006) A taxonomic revision of Herbertus (Jungermanniidae: Herbertaceae) in the Neotropics based on nuclear and chloroplast DNA and morphology. Botanical Journal of the Linnean Society 151, 309–332.
A taxonomic revision of Herbertus (Jungermanniidae: Herbertaceae) in the Neotropics based on nuclear and chloroplast DNA and morphology.Crossref | GoogleScholarGoogle Scholar |

Feldberg K, Hentschel J, Wilson R, Rycroft DS, Glenny D, Hienrichs J (2007) Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. Journal of Biogeography 34, 688–698.
Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution.Crossref | GoogleScholarGoogle Scholar |

Felsenstein J (1985) Confidence limits on phylogenies an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Fernandez CC, Shevock JR, Glazer AN, Thompson JN (2006) Cryptic species within the cosmopolitan dessication-tolerant moss Grimmia laevigata. Proceedings of the National Academy of Sciences, USA 103, 637–642.
Cryptic species within the cosmopolitan dessication-tolerant moss Grimmia laevigata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOiu74%3D&md5=06c448d2af9d02dde67a4a31c761a37aCAS |

Gradstein SR, Reiner–Drehwald ME, Schneider H (2003) A phylogenetic analysis of the genera of Lejeuneaceae (Hepaticae). Botanical Journal of the Linnean Society 143, 391–410.
A phylogenetic analysis of the genera of Lejeuneaceae (Hepaticae).Crossref | GoogleScholarGoogle Scholar |

Grolle R (1982) Ubersicht der Lejeuneaceae in Tasmanien. Wissenschaftliche Zeitschrift der Friedrich-Schiller-Universitaet Jena Naturwissenschaftliche Reihe 31, 207–227.

Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Hartmann FA, Wilson R, Gradstein SR, Schneider H, Hienrichs J (2006) Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae). International Journal of Plant Sciences 167, 1205–1214.
Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFylurg%3D&md5=8053279091b8e94ffc1f80a4a319e0d8CAS |

Hedenäs L (2008) Molecular variation in Drepanocladus aduncus s.l. does not support recognition of more than one species in Europe. Journal of Bryology 30, 108–120.
Molecular variation in Drepanocladus aduncus s.l. does not support recognition of more than one species in Europe.Crossref | GoogleScholarGoogle Scholar |

Hienrichs J, Groth H, Gradstein SR, Rycroft DS, Cole WJ, Anton H (2001) Plagiochila rutilans (Hepaticae): a poorly known species from tropical America. The Bryologist 104, 350–361.
Plagiochila rutilans (Hepaticae): a poorly known species from tropical America.Crossref | GoogleScholarGoogle Scholar |

Hienrichs J, Gradstein SR, Groth H, Linder M (2003) Plagiochila cucullifolia var. anomala var. nov. from Ecuador, with notes on discordant molecular and morphological variation in Plagiochila. Plant Systematics and Evolution 242, 205–216.
Plagiochila cucullifolia var. anomala var. nov. from Ecuador, with notes on discordant molecular and morphological variation in Plagiochila.Crossref | GoogleScholarGoogle Scholar |

Hienrichs J, Groth H, Lindner M, Feldberg K, Rycroft DS (2004) Molecular, morphological, and phytochemical evidence for a broad species concept of Plagiochila bifaria (Hepaticae). The Bryologist 107, 28–40.
Molecular, morphological, and phytochemical evidence for a broad species concept of Plagiochila bifaria (Hepaticae).Crossref | GoogleScholarGoogle Scholar |

Hienrichs J, Klugmann F, Hentschel J, Schneider H (2009) DNA taxonomy, cryptic speciation and diversification of the Neotropical–African liverwort, Marchesinia brachiata (Lejeuneaceae, Porellales). Molecular Phylogenetics and Evolution 53, 113–121.
DNA taxonomy, cryptic speciation and diversification of the Neotropical–African liverwort, Marchesinia brachiata (Lejeuneaceae, Porellales).Crossref | GoogleScholarGoogle Scholar | 19501177PubMed |

Hentschel J, Zhu R-L, Long D, Davison PG, Schneider H, Gradstein SR, Hienrichs J (2007) A phylogeny of Porella (Porellaceae, Jungermanniopsida) based on nuclear and chloroplast DNA sequences. Molecular Phylogenetics and Evolution 45, 693–705.
A phylogeny of Porella (Porellaceae, Jungermanniopsida) based on nuclear and chloroplast DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKhsr7I&md5=ab322635937ab963e79bc765db664817CAS | 17600732PubMed |

Hentschel J, von Konrat MJ, Pócs T, Schäfer-Verwimp A, Shaw AJ, Schneider H, Hienrichs J (2009) Molecular insights into the phylogeny and subgeneric classification of Frullania Raddi (Frullaniaceae: Porellales). Molecular Phylogenetics and Evolution 52, 142–156.
Molecular insights into the phylogeny and subgeneric classification of Frullania Raddi (Frullaniaceae: Porellales).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvF2ks7k%3D&md5=64ca50cb09e4c03f7c91d69a680a3d12CAS | 19166952PubMed |

Heslewood MM, Brown EA (2007) A molecular phylogeny of the liverwort family Lepidoziaceae Limpr. in Australasia. Plant Systematics and Evolution 265, 193–219.
A molecular phylogeny of the liverwort family Lepidoziaceae Limpr. in Australasia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVaqsbk%3D&md5=deb73fd8cc3b27c59d9ca8b56bdcf30bCAS |

Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=9f6a36e199f7b5fb4b0c67d9c6ee5798CAS | 11524383PubMed |

Huelsenbeck JP, Hillis DM, Nielsen R (1996) A likelihood-ratio test of monophyly. Systematic Biology 45, 546–558.
A likelihood-ratio test of monophyly.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck JP, Ronquist F, Hall B (2003) ‘MrBayes: a program for the Baysian inference of phylogeny.’ (University of Rochester: New York)

Ilkiu–Borges AL (2005) A taxonomic revision of Echinocolea (Lejeuneaceae, hepaticae). Nova Hedwigia 80, 45–71.
A taxonomic revision of Echinocolea (Lejeuneaceae, hepaticae).Crossref | GoogleScholarGoogle Scholar |

Kass RE, Raftery AE (1995) Bayes factors. Journal of the American Statistical Association 90, 773–795.
Bayes factors.Crossref | GoogleScholarGoogle Scholar |

Kearney M, Stuart BL (2004) Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 1677–1683.
Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones.Crossref | GoogleScholarGoogle Scholar |

King MG, Roalson EH (2008) Exploring evolutionary dynamics of nrDNA in Carex Subgenus Vignea (Cyperaceae). Systematic Botany 33, 514–524.
Exploring evolutionary dynamics of nrDNA in Carex Subgenus Vignea (Cyperaceae).Crossref | GoogleScholarGoogle Scholar |

Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887–895.
Delimiting species without monophyletic gene trees.Crossref | GoogleScholarGoogle Scholar | 18027282PubMed |

Lemmon AR, Moriarty EC (2004) The importance of proper model assumption in Bayesian phylogenetics. Systematic Biology 53, 265–277.
The importance of proper model assumption in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar | 15205052PubMed |

MacNair MR, Gardner M (1998) The evolution of edaphic endemics. In ‘Endless forms: species and speciation’. (Eds DJ Howard, SH Berlocher) pp. 157–171. (Oxford University Press: Oxford, UK)

MacNair MR, MacNair VE, Martin BE (1989) Adaptive speciation in Mimulus: an ecological comparison of M. cupriphilus with its presumed progenitor, M. guttatus. New Phytologist 112, 269–279.
Adaptive speciation in Mimulus: an ecological comparison of M. cupriphilus with its presumed progenitor, M. guttatus.Crossref | GoogleScholarGoogle Scholar |

Maddison WP, Maddison DR (2009) ‘Mesquite: a modular system for evolutionary analysis. Version 2.6.’ Available at http://mesquiteproject.org [accessed August 2009].

McDaniel S, Shaw AJ (2003) Phylogeographic structure and cryptic speciation in the trans-Antarctic moss Pyrrhobryum mnioides. Evolution 57, 205–215.

Mitten W (1855) Hepaticae. In ‘Botany of the Antarctic Voyage of H.M. discovery shops Erebus and Terror in the Years 1939–1843: under the command of Captain Sir James Clark Ross. Volume II. Flora Nova Zelandiae 2’. (Ed. JD Hooker) pp. 125–172 (Lovell Reeve: London)

Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
Bayesian phylogenetic analysis of combined data.Crossref | GoogleScholarGoogle Scholar | 14965900PubMed |

Odrzykoski IJ, Szweykowski J (1991) Genetic differentiation without concordant morphological divergence in the thallose liverwort Conocephalum conicum. Plant Systematics and Evolution 178, 135–151.

Pfeiffer T, Frey W, Stech M (2002) A new species of Treubia (Treubiaceae, Hepaticophytina) from New Zealand based on molecular evidence – Studies in austral temperate rain forest bryophytes 20. Nova Hedwigia 75, 241–253.
A new species of Treubia (Treubiaceae, Hepaticophytina) from New Zealand based on molecular evidence – Studies in austral temperate rain forest bryophytes 20.Crossref | GoogleScholarGoogle Scholar |

Phillips MJ, McLenachan PA, Down C, Gibb GC, Penny D (2006) Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. Systematic Biology 55, 122–137.
Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations.Crossref | GoogleScholarGoogle Scholar | 16507529PubMed |

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=4e0346dcf5e755b8571ba7ae6bc78c19CAS | 18397919PubMed |

Quandt D, Stech M (2004) Molecular evolution of the trnT(UGU)–trnF(GAA) region in bryophytes. Plant Biology 6, 545–554.
Molecular evolution of the trnT(UGU)–trnF(GAA) region in bryophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSjtL0%3D&md5=ca4b813cea4899c7a2b5ac5d0fa977b7CAS | 15375725PubMed |

Reiner-Drehwald ME, Goda A (2000) Revision of the genus Crossotolejeunea (Lejeuneaceae, Hepaticae). The Journal of the Hattori Botanical Laboratory 89, 1–54.

Reiner-Drehwald ME, Schäfer-Verwimp A (2008) On Inflatolejeunea, Lejeunea species with eplicate perianths and Lejeunea talamancensis sp. nov. from Costa Rica (Lejeuneaceae). Nova Hedwigia 87, 387–420.
On Inflatolejeunea, Lejeunea species with eplicate perianths and Lejeunea talamancensis sp. nov. from Costa Rica (Lejeuneaceae).Crossref | GoogleScholarGoogle Scholar |

Renner MAM, Brown EA, Wardle GM (2010) The Lejeunea tumida species group (Lejeuneaceae: Jungermanniopsida) in New Zealand. Australian Systematic Botany 23, 443–462.

Rieppel OC, Kearney M (2002) Similarity. Biological Journal of the Linnean Society. Linnean Society of London 75, 59–82.
Similarity.Crossref | GoogleScholarGoogle Scholar |

Rieseberg LH (1994) Are many plant species paraphyletic? Taxon 43, 21–32.
Are many plant species paraphyletic?Crossref | GoogleScholarGoogle Scholar |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogentic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogentic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=e80938a3560739b44398f92d969e7b83CAS | 12912839PubMed |

Rosenberg NA (2003) The shapes of neutral gene phylogenies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57, 1465–1477.

Schuster RM (1963a) Studies on Antipodal Hepaticae I. Annotated keys to the genera of Antipodal Hepaticae with special reference to New Zealand and Tasmania. The Journal of the Hattori Botanical Laboratory 26, 185–309.

Schuster RM (1963b) An annotated synopsis of the genera and subgenera of Lejeuneaceae. Nova Hedwigia. Beiheft 9, 1–203.

Shaw AJ (2000) Molecular phylogeny and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae). Molecular Ecology 9, 595–608.
Molecular phylogeny and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFCqu7k%3D&md5=da68e7223c2a3a3f03cb5911098a1742CAS | 10792702PubMed |

Shaw AJ, Allen B (2000) Phylogenetic relationships, morphological incongruence, and geographic speciation in the Fontinalaceae (Bryophyta). Molecular Phylogenetics and Evolution 16, 225–237.
Phylogenetic relationships, morphological incongruence, and geographic speciation in the Fontinalaceae (Bryophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1antLo%3D&md5=0ead6b88282e9d2a72dadd66a61bee87CAS | 10942609PubMed |

Shaw AJ, Cox CJ, Boles SB (2005) Phylogeny, species delimitation and recombination in Sphagnum section Acutifolia. Systematic Botany 30, 16–33.
Phylogeny, species delimitation and recombination in Sphagnum section Acutifolia.Crossref | GoogleScholarGoogle Scholar |

So ML (2002) The Genus Porella (Porellaceae, Hepaticae) in Australasia and the South Pacific. Systematic Botany 27, 4–13.

So ML (2005a) A synopsis of Radula (Radulaceae, Marchantiophyta) in New Zealand and Tasmania. The Journal of the Hattori Botanical Laboratory 98, 149–174.

So ML (2005b) Porella (Porellaceae, Marchantiophyta) in Latin America. New Zealand Journal of Botany 43, 301–321.
Porella (Porellaceae, Marchantiophyta) in Latin America.Crossref | GoogleScholarGoogle Scholar |

Soltis DE, Soltis PS, Milligan BG (1992) Intraspecific cpDNA variation: systematic and phylogenetic implications. In ‘Molecular plant systematics’. (Eds PS Soltis, DE Soltis, JJ Doyle) pp. 1379–1390. (Chapman and Hall: New York)

Stech M, Quandt D (2010) 20 000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa 9, 196–228.

Stephani F (1896) Hepaticarum species novae. IX. Hedwigia 35, 73–140.

Stotler RE, Crandall–Stotler B (1974) A monograph of the genus Bryopteris. Bryophytorum Bibliotheca 3, 1–159.

Swofford DL (2002) ‘PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version b4.10.’ (Sinauer: Sunderland, MA)

Taberlet P, Geilly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17, 1105–1109.
Universal primers for amplification of three non-coding regions of chloroplast DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhslel&md5=234bcec71831bac22af110fe3cf2fca0CAS | 1932684PubMed |

Theriot E (1992) Clusters, species concepts, and morphological evolution of diatoms. Systematic Biology 41, 141–157.

Vanderpoorten A (2004) A simple taxonomic treatment for a complicated story: the genus Hygroamblysteium (Hypnales, Amblystegiaceae). Monographs in Systematic Botany from the Missouri Botanic Gardens 98, 320–327.

Vanderpoorten A, Shaw AJ, Goffinet B (2001) Testing controversial alignments in Amblystegium and related genera (Amblystegiaceae: Bryopsida). Evidence from rDNA ITS sequences. Systematic Botany 26, 470–479.

Vilnet AA, Konstantinova NA, Troitsky AV (2008) Phylogeny and systematics of the genus Lophozia s. str. (Dumort.) Dumort. (Hepaticae) and related taxa from nuclear ITS1–2 and chloroplast trnL–F sequences. Molecular Phylogenetics and Evolution 47, 403–418.
Phylogeny and systematics of the genus Lophozia s. str. (Dumort.) Dumort. (Hepaticae) and related taxa from nuclear ITS1–2 and chloroplast trnL–F sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktV2jt7g%3D&md5=7efd72dc37f9de8e4a371a4e9ac86d6dCAS | 18249561PubMed |

Von Hagen KB, Kadereit JW (2002) Phylogeny and flower evolution of the Swertiinae (Gentianaceae–Gentianeae): homoplasy and the principal of variable proportions. Systematic Botany 27, 548–572.

Wachowiak W, Baczkeiwicz A, Chudzinska E, Buczkowska K (2007) Cryptic speciation in liverworts – a case study in the Aneura pinguis complex. Botanical Journal of the Linnean Society 155, 273–282.
Cryptic speciation in liverworts – a case study in the Aneura pinguis complex.Crossref | GoogleScholarGoogle Scholar |

Whittall JB, Carlson ML, Beardsley PM, Meinke RJ, Liston A (2006) The Mimulus moschatus alliance (Phrymaceae): molecular and morphological phylogenetics and their conservation implications. Systematic Botany 31, 380–397.
The Mimulus moschatus alliance (Phrymaceae): molecular and morphological phylogenetics and their conservation implications.Crossref | GoogleScholarGoogle Scholar |

Wilson R, Gradstein SR, Schneider H, Hienrichs J (2007) Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. Molecular Phylogenetics and Evolution 43, 270–282.
Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGrs7s%3D&md5=f91887a778023ae6ff5c222c3a44e39dCAS | 17157036PubMed |

Woods K, Hilu K, Borsch T, Wiersma JH (2005) Patterns of variation and systematics of Nymphaea odorata: II. Sequence information from ITS and trnL–trnF . Systematic Botany 30, 481–493.
Patterns of variation and systematics of Nymphaea odorata: II. Sequence information from ITS and trnL–trnF .Crossref | GoogleScholarGoogle Scholar |

Wyatt R, Lane DM, Stoneburner A (1982) The misuse of mixed collections in Bryophyte taxonomy. Taxon 31, 698–704.
The misuse of mixed collections in Bryophyte taxonomy.Crossref | GoogleScholarGoogle Scholar |

Zhu R-L, Gradstein SR (2005) Monograph of Lopholejeunea (Lejeuneaceae, Hepaticae) in Asia. Systematic Botany Monographs 74, 1–98.

Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Dissertation, The University of Texas, Austin, TX. Available at www.bio.utexas.edu/faculty/antisense/garli/Garli.html [accessed October 2009].