Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
L. A. S. JOHNSON REVIEW

Floral ontogeny of Hardenbergia violacea (Fabaceae: Faboideae: Phaseoleae) and taxa of tribes Bossiaeeae and Mirbelieae, with emphasis on presence of pseudoraceme inflorescences

Shirley C. Tucker
+ Author Affiliations
- Author Affiliations

Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106-9610, USA, and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA. Email: tucker@lifesci.ucsb.edu

Australian Systematic Botany 19(3) 193-210 https://doi.org/10.1071/SB05004
Submitted: 17 March 2005  Accepted: 13 December 2005   Published: 30 June 2006

Abstract

The floral ontogeny of several Australian papilionoid taxa has been studied in Hardenbergia violacea L. (Phaseoleae); Kennedia rubicunda (Phaseoleae; inflorescences only); Bossiaea cordigera (Bossiaeeae); Gastrolobium truncatum, Mirbelia oxylobioides, and Pultenaea daphnoides (Mirbelieae). Species studied of Hardenbergia, Pultenaea, and Brachysema have pseudoracemose inflorescences comprised of triads of flowers, Kennedia rubicunda has paired flowers that resemble reduced pseudoracemes, while Gastrolobium truncatum and Mirbelia oxylobioides have pseudoracemes comprised of 2–10 flowers per ultimate unit. Pseudoracemes are a significant and overlooked feature in many taxa of tribes Bossiaeeae and Mirbelieae. Hardenbergia violacea has ultimate axillary units of three flowers, each with a subtending bract but no bracteoles. Floral ontogeny in H. violacea and P. daphnoides shows acropetal order among whorls, and unidirectional order starting from the abaxial side in sepal, petal, and stamen whorls, as in most papilionoid flowers. The carpel is initiated concurrently with the first antesepalous stamen primordium. Pultenaea daphnoides and Bossiaea cordigera have unidirectional sepal initiation starting abaxially, but simultaneous petal initiation, an unusual feature among papilionoids. In late stages of H. violacea and B. cordigera, a diadelphous stamen tube or sheath is formed, while in taxa of Mirbelieae the stamens remain free. The flowers in all taxa studied become strongly zygomorphic as evidenced by three petal morphs and upturning of the free portions of style and stamens late in development.


Acknowledgments

I thank Jo Anna Bass and David Pierce for their technical assistance with scanning electron microscopy and photography, and Jan Beckert for drawings. Permission to collect material at the Arboretum of the University of California, Santa Cruz, CA, is acknowledged and appreciated. Scanning electron microscopy work was done at the Electron Microscopy facility at the Department of Geology, University of California, Santa Barbara, California 93106, USA. The research was supported by Boyd Professorship funds from Louisiana State University, Baton Rouge, Louisiana.


References


Berg RY (1979) Legume, seed, and myrmechorous dispersal in Kennedia and Hardenbergia (Fabaceae), with a remark on the Durian theory. Norwegian Journal of Botany 26, 229–254. open url image1

Briggs BG, Johnson LAS (1979) Evolution in the Myrtaceae—evidence from inflorescence structure. Proceedings of the Linnean Society of New South Wales 102, 157–272. open url image1

Bruneau A , Doyle JJ , Doyle JL (1995) Phylogenetic relationships in Phaseoleae: evidence from chloroplast DNA restriction site characters. In ‘Advances in legume systematics. Part 7. Phylogeny’. (Eds M Crisp, JJ Doyle) pp. 309–330. (Royal Botanic Gardens: Kew)

Crisp MD , Weston PH (1987) Cladistics and legume systematics, with an analysis of the Bossiaeeae, Brongniartieae, and Mirbelieae. In ‘Advances in legume systematics. Part 3’. (Ed. CH Stirton) pp. 65–130. (Royal Botanic Gardens: Kew)

Crisp MD , Weston PH (1995) Mirbelieae. In ‘Advances in legume systematics. Part 7. Phylogeny.’ (Eds MJ Crisp, JJ Doyle) pp. 245–282. (Royal Botanic Gardens: Kew)

Crisp MD , Cook LG (2003 a) Phylogeny and embryo sac evolution in the endemic Australian papilionoid tribes Mirbelieae and Bossiaeeae. In ‘Advances in legume systematics. Part 10. Higher level systematics’. (Eds BB Klitgaard, A Bruneau) pp. 253–268. (Royal Botanic Gardens: Kew)

Crisp MD, Cook LG (2003b) Molecular evidence for definition of genera in the Oxylobium group (Fabaceae: Mirbelieae). Systematic Botany 28, 705–713. open url image1

Crozier TS, Thomas JF (1993) Normal floral ontogeny and cool temperature-induced aberrant floral development in Glycine max (Fabaceae). American Journal of Botany 80, 429–448.
Crossref |
open url image1

Doyle JJ , Chappill JA , Bailey CD , Kajita T (2000) Towards a comprehensive phylogeny of legumes: evidence from rbcL sequences and non-molecular data. In ‘Advances in legume systematics. Part 9’. (Eds PS Herendeen, A Bruneau) pp. 1–20. (Royal Botanic Gardens: Kew)

Endress PK (1994) ‘Diversity and evolutionary biology of tropical flowers.’ (University Press: Cambridge, UK)

Fahn A (1969) ‘Plant anatomy.’ (Pergamon Press Ltd: Oxford)

Greig D (1999) ‘Field guide to Australian wildflowers.’ (New Holland Publishers: Sydney)

Guard AT (1931) Development of floral organs of the soybean. Botanical Gazette 91, 97–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hirsch AM, Krupp RSN, Lin Y, Wang SW, Yang W, Tucker SC (2002) Inflorescence and flower development in wild-type and sid mutant in Melilotus alba. Canadian Journal of Botany 80, 732–740.
Crossref | GoogleScholarGoogle Scholar | open url image1

Horner HT, Healy RA, Cervantes-Martinez T, Palmer RG (2003) Floral nectary fine structure and development in Glycine max L. (Fabaceae). International Journal of Plant Sciences 164, 675–690.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hutchinson J (1964) ‘The genera of flowering plants (Angiospermae). Vol. 1. Dicotyledones.’ (Oxford University Press: Oxford)

Johnson LAS (1976) Problems of species and genera in Eucalyptus (Myrtaceae). Plant Systematics and Evolution 125, 155–167.
Crossref |
open url image1

Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001) RbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae, and allies. Systematic Botany 26, 515–536. open url image1

Klitgaard BB (1999) Floral ontogeny of four taxa of Dalbergieae. Plant Systematics and Evolution 219, 1–25.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lackey JA (1981) Phaseoleae. In ‘Advances in legume systematics. Part 1’. (Eds RM Polhill, PH Raven) pp. 301–328. (Royal Botanic Gardens, Kew)

Mair O (1977) Zur Entwicklungsgeschichte monosymmetrischer Dicotylen-Blüten. Dissertationes Botanicae 38, 1–90, 260–274. open url image1

Payer J-B (1857) ‘Traité d’organogénie comparée de la fleur.’ (Librairie de Victor Masson: Paris. Reprint, 1966, J Cramer: 3301 Lehre, Germany)

Polhill RM (1981 a) Mirbelieae. In ‘Advances in legume systematics. Part 1’. (Eds RM Polhill, PH Raven) pp. 391–392. (Royal Botanic Gardens: Kew)

Polhill RM (1981 b) Bossiaeeae. In ‘Advances in legume systematics. Part 1’. (Eds RM Polhill, PH Raven) pp. 393–395. (Royal Botanic Gardens: Kew)

Polhill RM , Raven PH (Eds) (1981) ‘Advances in legume systematics. Part 1.’ (Royal Botanic Gardens: Kew)

Prenner G (2004a) The asymmetric androecium in Papilionoideae (Leguminosae): definition, occurrence, and possible systematic value. International Journal of Plant Sciences 165, 499–510.
Crossref | GoogleScholarGoogle Scholar | open url image1

Prenner G (2004b) Floral development in Daviesia cordata (Leguminosae: Papilionoideae: Mirbelieae) and its systematic implications. Australian Journal of Botany 52, 285–291.
Crossref | GoogleScholarGoogle Scholar | open url image1

Prenner G (2004c) Floral ontogeny in Lespedeza thunbergii (Leguminosae: Papilionoideae: Desmodieae): variations from the unidirectional mode of organ formation. Journal of Plant Research 117, 297–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rohrbach P (1870) Beiträge zur Morphologie der Leguminosen. Botanisches Zeitschrift 28, 817–829. open url image1

Sands VE (1975) The cytoevolution of the Australian Papilionaceae. Proceedings of the Linnean Society of New South Wales 100, 118–155. open url image1

Stirton CH (1981) Petal sculpturing in papilionoid legumes. In ‘Advances in legume systematics’. (Eds RM Polhill, PH Raven) pp. 771–788. (Royal Botanic Gardens: Kew)

Tucker SC (1984) Unidirectional organ initiation in leguminous flowers. American Journal of Botany 71, 1139–1148.
Crossref |
open url image1

Tucker SC (1987a) Pseudoracemes in papilionoid legumes: their nature, development, and variation. Botanical Journal of the Linnean Society of London 95, 181–206. open url image1

Tucker SC (1987 b) Floral initiation and development in legumes. In ‘Advances in legume systematics. Part 3’. (Ed. CH Stirton) pp. 183–239. (Royal Botanic Gardens: Kew)

Tucker SC (1989) Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae). American Journal of Botany 76, 714–729.
Crossref |
open url image1

Tucker SC (1993) Floral ontogeny in Sophoreae (Leguminosae: Papilionoideae). l. Myroxylon (Myroxylon group) and Castanospermum (Angylocalyx group). American Journal of Botany 80, 65–75.
Crossref |
open url image1

Tucker SC (1994) Floral ontogeny in Sophoreae (Leguminosae: Papilionoideae). II. Sophora (Sophora group). American Journal of Botany 81, 368–380.
Crossref |
open url image1

Tucker SC (1997) Floral evolution, development, and convergence: the hierarchical-significance hypothesis. International Journal of Plant Sciences 158, S143–S161.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tucker SC (2002) Floral ontogeny in Sophoreae (Leguminosae: Papilionoideae). III. Cadia purpurea with radial symmetry and random petal aestivation. American Journal of Botany 89, 748–757. open url image1

Tucker SC (2003) Floral development in legumes. Update on floral development. Plant Physiology 131, 911–926.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tucker SC, Stirton CH (1991) Development of the cymose inflorescence, cupulum, and flower of Psoralea pinnata (Leguminosae: Papilionoideae: Psoraleeae). Botanical Journal of the Linnean Society of London 106, 208–227. open url image1

Tucker SC, Kantz KE (2001) Open carpels with ovules in Fabaceae. International Journal of Plant Sciences 162, 1065–1073.
Crossref | GoogleScholarGoogle Scholar | open url image1

Waddle RM, Lersten NR (1974) Morphology of discoid floral nectaries in Leguminosae, especially tribe Phaseoleae (Papilionoideae). Phytomorphology 23, 152–161. open url image1

Weberling F (1989) ‘Morphology of flowers and inflorescences.’ (Cambridge University Press: Cambridge)

Wojciechowski MF , Sanderson MJ , Steele KP , Liston A (2000) Molecular phylogeny of the ‘temperate herbaceous tribes’ of papilionoid legumes: a supertree approach. In ‘Advances in legume systematics. Part 9’. (Eds PS Herendeen, A Bruneau) pp. 277–298. (Royal Botanic Gardens: Kew)

Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany 91, 1846–1862. open url image1