There’s gold in them thar hills! Morphology and molecules delimit species in Xerochrysum (Asteraceae; Gnaphalieae) and reveal many new taxa
Timothy L. Collins A , Alexander N. Schmidt-Lebuhn B * , Rose L. Andrew A , Ian R. H. Telford A and Jeremy J. Bruhl AA School of Environmental and Rural Science, University of New England, Trevenna Road, Armidale, NSW 2351, Australia.
B CSIRO, Centre for Australian National Biodiversity Research, Clunies Ross Street, Canberra, ACT 2601, Australia.
Australian Systematic Botany 35(2) 120-185 https://doi.org/10.1071/SB21014
Submitted: 14 April 2021 Accepted: 14 March 2022 Published: 9 June 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)
Abstract
Golden everlasting paper daisies in the genus Xerochrysum Tzvelev are iconic Australian native plants grown worldwide. The X. bracteatum species complex has been regarded as taxonomically confusing and in need of revision for over 60 years. We applied morphological and molecular analyses to delimit species, detect common ancestry among populations, and identify putative hybrids in the genus Xerochrysum (Asteraceae: Gnaphalieae). Multiple lines of evidence provided strong support for the recognition of new taxa. Here we describe the following 11 new species: X. andrewiae T.L.Collins & J.J.Bruhl, X. berarngutta T.L.Collins & I.Telford, X. copelandii J.J.Bruhl & I.Telford, X. frutescens J.J.Bruhl & I.Telford, X. gudang T.L.Collins & J.J.Bruhl, X. hispidum T.L.Collins & I.Telford, X. macsweeneyorum T.L.Collins, X. murapan T.L.Collins & I.Telford, X. neoanglicum J.J.Bruhl & I.Telford, X. strictum T.L.Collins, and X. wilsonii T.L.Collins, reinstate Helichrysum banksii A.Cunn. ex DC. (as X. banksii (A.Cunn. ex DC.) T.L.Collins & I.Telford), lectotypify X. banksii and X. papillosum (Labill.) R.J.Bayer, and recircumscribe X. bicolor (Lindl.) R.J.Bayer to include X. halmaturorum Paul G.Wilson and some populations of X. bracteatum sens. lat. from mainland South Australia and Victoria. We also provide revised descriptions of all taxa in the genus, their conservation status, a dichotomous key, tables distinguishing closely related taxa and distribution maps.
Keywords: Australia, biodiversity, Bracteantha, Compositae, endemic, Helichrysum bracteatum, integrated taxonomy, paper daisy, systematics.
References
Al-Beyroutiová M, Sabo M, Sleziak P, Dušinský R, Birčák E, Hauptvogel P, Kilian A, Švec M (2016) Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism. Plant Systematics and Evolution 302, 1083–1091.| Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism.Crossref | GoogleScholarGoogle Scholar |
Alam M, Neal J, O’Connor K, Kilian A, Topp B (2018) Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in Macadamia. PLoS One 13, e0203465
| Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in Macadamia.Crossref | GoogleScholarGoogle Scholar | 30169500PubMed |
Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Botanica 104, 1–195.
Anderson BM, Thiele KR, Barrett MD (2017) A revision of the Triodia basedowii species complex and close relatives (Poaceae: Chloridoideae). Australian Systematic Botany 30, 197–229.
| A revision of the Triodia basedowii species complex and close relatives (Poaceae: Chloridoideae).Crossref | GoogleScholarGoogle Scholar |
Andrews HC (1805) ‘The Botanist’s Repository for New, and Rare Plants. Vol. 6.’ (Published by the author: London, UK)
| Crossref |
Australian Cultivar Registration Authority (1977) Xerochrysum ‘Diamond Head’; Xerochrysum bracteatum ‘Diamond Head’. In ‘Descriptions of Registered Cultivars’. Available at https://www.anbg.gov.au/acra/descriptions/acc107.html [Verified 21 February 2020]
Bayer RJ (2001) Xerochrysum Tzvelev, a pre-existing generic name for Bracteantha Anderb. & Haegi (Asteraceae: Gnaphalieae). Kew Bulletin 56, 1013–1015.
Beaumont M, Barratt EM, Gottelli D, Kitchener AC, Daniels MJ, Pritchard JK, Bruford MW (2001) Genetic diversity and introgression in the Scottish wildcat. Molecular Ecology 10, 319–336.
| Genetic diversity and introgression in the Scottish wildcat.Crossref | GoogleScholarGoogle Scholar | 11298948PubMed |
Belbin L (1993) ‘PATN – pattern analysis package.’ (CSIRO Division of Wildlife and Ecology: Canberra, ACT, Australia)
Bentham G (1867) ‘Flora Australiensis.’ (Lovell Reeve & Co.: London, UK)
Buchanan AM (2004) A new species of Xerochrysum (Gnaphalieae: Asteraceae) from western Tasmania, Australia. Muelleria 20, 49–52.
Burbidge NT (1970) Compositae (Asteraceae). In ‘Flora of the Australian Capital Territory.’ (Ed. M Gray) (Australian National University Press: Canberra, ACT, Australia)
Bureau of Meteorology (2020) Climate statistics for Australian locations. Available at http://www.bom.gov.au/climate/averages/tables/ [Verified 15 June 2020]
CHAH (2020a) Vascular plants. In ‘Australian Plant Census’. Available at https://biodiversity.org.au/nsl/services/APC [Verified 20 February 2020]
CHAH (2020b) Usage of a name (Instance). Helichrysum leucopsideum DC. tax. nov. In ‘Australian Plant Name Index’. Available at https://id.biodiversity.org.au/instance/apni/503733 [Verified 4 January 2020]
Collins TL, Bruhl JJ, Schmidt-Lebuhn AN, Telford IRH, Andrew RL (2021) Tracing the origins of hybrids through history: monstrous cultivars and Napoléon Bonaparte’s exiled paper daisies (Asteraceae; Gnaphalieae). Botanical Journal of the Linnean Society 197, 277–289.
| Tracing the origins of hybrids through history: monstrous cultivars and Napoléon Bonaparte’s exiled paper daisies (Asteraceae; Gnaphalieae).Crossref | GoogleScholarGoogle Scholar |
Crisp MD, Laffan S, Linder HP, Monro A (2001) Endemism in the Australian Flora. Journal of Biogeography 28, 183–198.
| Endemism in the Australian Flora.Crossref | GoogleScholarGoogle Scholar |
Curtis WM (1956) ‘The student’s flora of Tasmania.’ (Government Printer: Hobart, Tas., Australia)
Dayrat B (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
| Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |
de Candolle AP (1838) ‘Prodromus Systematis Naturalis Regni Vegetabilis Pars sexta.’ (Sumptibus Sociorum Treuttel et Würtz, viâ dictà de Lille, n° 17. Venitque in eorundem bibliopolio Argentorati: Parisiis)
De Queiroz K (2005) A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 4, 196–215.
De Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879–886.
| Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |
Department of the Environment and Energy (2016) ‘Interim Biogeographical Regionalisation for Australia (IBRA) version 7.’ (Commonwealth of Australia: Canberra, ACT, Australia)
Depypere L, Chaerle P, Breyne P, Vander Mijnsbrugge K, Goetghebeur P (2009) A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Systematics and Evolution 279, 219–231.
| A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus.Crossref | GoogleScholarGoogle Scholar |
D’hoop BB, Paulo MJ, Kowitwanich K, Sengers M, Visser RGF, van Eck HJ, van Eeuwijk FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics 121, 1151
| Population structure and linkage disequilibrium unravelled in tetraploid potato.Crossref | GoogleScholarGoogle Scholar | 20563789PubMed |
Duley G (2007) Species limits in Xerochrysum (Asteraceae). Honours Thesis, University of New England.
Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G (2017) Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by Diversity Arrays Technology ‘genotyping-by-sequencing’ platform (DArTseq). Frontiers in Genetics 8, 1–9.
| Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by Diversity Arrays Technology ‘genotyping-by-sequencing’ platform (DArTseq).Crossref | GoogleScholarGoogle Scholar |
Fairley A, Moore P (1989) ‘Native plants of the Sydney district: an identification guide.’ (Kangaroo Press: Sydney, NSW, Australia)
Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68.
| Compositional dissimilarity as a robust measure of ecological distance.Crossref | GoogleScholarGoogle Scholar |
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies.Crossref | GoogleScholarGoogle Scholar | 12930761PubMed |
Faraway JJ (2012) Backscoring in principal coordinates analysis. Journal of Computational and Graphical Statistics 21, 394–412.
| Backscoring in principal coordinates analysis.Crossref | GoogleScholarGoogle Scholar |
Flann C (1998) Bracteantha palustris (Asteraceae: Gnaphalieae), a new species in Victoria and Tasmania. Muelleria 11, 97–100.
Funk SM, Guedaoura S, Juras R, Raziq A, Landolsi F, Luís C, Amparo Martínez M, Abubakar Musa M, Mujica F, Maria do Mar O, Ouragh L, Yves‐Marie S, Jose Luis VP, Cothran EG (2020) Major inconsistencies of inferred population genetic structure estimated in a large set of domestic horse breeds using microsatellites. Ecology and Evolution 10, 4261–4279.
| Major inconsistencies of inferred population genetic structure estimated in a large set of domestic horse breeds using microsatellites.Crossref | GoogleScholarGoogle Scholar | 32489595PubMed |
Galbany-Casals M, Unwin M, Garcia-Jacas N, Smissen RD, Susanna A, Bayer RJ (2014) Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: Incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. Taxon 63, 608–624.
| Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: Incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation.Crossref | GoogleScholarGoogle Scholar |
Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338.
| Some distance properties of latent root and vector methods used in multivariate analysis.Crossref | GoogleScholarGoogle Scholar |
Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27, 857–871.
Gruber B, Unmack PJ, Berry OF, Georges A (2018) dartr: an r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources 18, 691–699.
| dartr: an r package to facilitate analysis of SNP data generated from reduced representation genome sequencing.Crossref | GoogleScholarGoogle Scholar | 29266847PubMed |
Harden GJ (1991) ‘Flora of New South Wales.’ (NSW University Press: Sydney, NSW, Australia)
Holman JE, Hughes JM, Fensham RJ (2003) A morphological cline in Eucalyptus: a genetic perspective. Molecular Ecology 12, 3013–3025.
| A morphological cline in Eucalyptus: a genetic perspective.Crossref | GoogleScholarGoogle Scholar | 14629382PubMed |
IUCN (2019) ‘IUCN Red List categories and criteria.’ (International Union for Conservation of Nature: Gland, Switzerland)
Jombart T, Ahmed I (2011) adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071.
| adegenet 1.3–1: new tools for the analysis of genome-wide SNP data.Crossref | GoogleScholarGoogle Scholar | 21926124PubMed |
Keelty M, Dilag L, Loughlin B, Howard A, McDaid S, Gardner L, Boddington D (2020) The independent review into South Australia’s 2019–2020 bushfire season. (Government of South Australia) Available at https://www.lga.sa.gov.au/__data/assets/pdf_file/0036/739287/ECM_714111_v12_Summary-of-the-Independent-Review-into-South-Australia-s-2019-2020-Bushfire-Season-the-Keelty-Revie.pdf
Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In ‘Data production and analysis in population genomics’. (Eds F Pompanon, A Bonin) pp. 67–89. (Humana Press: Totowa, NJ, USA)
Labillardière JJH (1806) ‘Novae Hollandiae Plantarum Specimen.’ (Ex typographia Dominæ Huzard: Paris, France)
Laport RG, Minckley RL, Ramsey J (2016) Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. American Journal of Botany 103, 1358–1374.
| Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex.Crossref | GoogleScholarGoogle Scholar | 27440793PubMed |
Lawson DJ, van Dorp L, Falush D (2018) A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nature Communications 9, 3258
| A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots.Crossref | GoogleScholarGoogle Scholar | 30108219PubMed |
Lindley J (1835) ‘Edwards’s Botanical register v.21.’ (James Ridgway and Sons: London, UK)
Meirmans PG (2019) Subsampling reveals that unbalanced sampling affects Structure results in a multi-species dataset. Heredity 122, 276–287.
| Subsampling reveals that unbalanced sampling affects Structure results in a multi-species dataset.Crossref | GoogleScholarGoogle Scholar | 30026534PubMed |
Missouri Botanical Garden (2020) !Xerochrysum Tzvelev. In ‘Tropicos’. (Missouri Botanical Garden) Available at http://www.tropicos.org/Name/50007766 [Verified 18 August 2019]
Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952.
| Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 16791187PubMed |
Moore AJ, Moore WL, Baldwin BG (2014) Genetic and ecotypic differentiation in a Californian plant polyploid complex (Grindelia, Asteraceae). PLoS One 9, e95656
| Genetic and ecotypic differentiation in a Californian plant polyploid complex (Grindelia, Asteraceae).Crossref | GoogleScholarGoogle Scholar | 24755840PubMed |
Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.
| Analysis of gene diversity in subdivided populations.Crossref | GoogleScholarGoogle Scholar | 4519626PubMed |
Nie Z-L, Funk VA, Meng Y, Deng T, Sun H, Wen J (2016) Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytologist 209, 1795–1806.
| Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae).Crossref | GoogleScholarGoogle Scholar | 26528674PubMed |
Orchard AE, Thompson HS (1999) ‘Flora of Australia. Vol. 1. 2nd edn. Introduction.’ (AGPS: Canberra, ACT, Australia)
Payne WW (1978) A glossary of plant hair terminology. Brittonia 30, 239–255.
| A glossary of plant hair terminology.Crossref | GoogleScholarGoogle Scholar |
Plunkett GT, Wilson KL, Bruhl JJ (2013) Sedges in the mist: a new species of Lepidosperma (Cyperaceae, Schoeneae) from the mountains of Tasmania. PhytoKeys 28, 19–59.
| Sedges in the mist: a new species of Lepidosperma (Cyperaceae, Schoeneae) from the mountains of Tasmania.Crossref | GoogleScholarGoogle Scholar |
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| Inference of population structure using multilocus genotype data.Crossref | GoogleScholarGoogle Scholar | 10835412PubMed |
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298, 2381–2385.
| Genetic structure of human populations.Crossref | GoogleScholarGoogle Scholar | 12493913PubMed |
Russell J (2015) The story of ‘Xerochrysum bracteatum’. Journal (Australian Native Plants Society, Canberra Region) 18, 16–17.
Rutherford S, Rossetto M, Bragg JG, McPherson H, Benson D, Bonser SP, Wilson PG (2018) Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity 121, 126–141.
| Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species.Crossref | GoogleScholarGoogle Scholar | 29632325PubMed |
Rymer B (2006) Australian daisies. In ‘Australian Plants Online’. (Association of Societies for Growing Australian Plants) Available at http://anpsa.org.au/APOL2006/jun06-4.html [Verified 4 October 2019]
Schilling EE (2011) Systematics of the Eupatorium album complex (Asteraceae) from eastern North America. Systematic Botany 36, 1088–1100.
| Systematics of the Eupatorium album complex (Asteraceae) from eastern North America.Crossref | GoogleScholarGoogle Scholar |
Schmidt-Lebuhn AN, Bruhl JJ, Telford IRH, Wilson PG (2015) Phylogenetic relationships of Coronidium, Xerochrysum and several neglected Australian species of “Helichrysum” (Asteraceae: Gnaphalieae). Taxon 64, 96–109.
| Phylogenetic relationships of Coronidium, Xerochrysum and several neglected Australian species of “Helichrysum” (Asteraceae: Gnaphalieae).Crossref | GoogleScholarGoogle Scholar |
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675.
| NIH Image to ImageJ: 25 years of image analysis.Crossref | GoogleScholarGoogle Scholar | 22930834PubMed |
Sprengel K (1826) ‘Systema vegetabilium.’ (Dieterichianae: New York, NY, USA)
Stift M, Kolář F, Meirmans PG (2019) Structure is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123, 429–441.
| Structure is more robust than other clustering methods in simulated mixed-ploidy populations.Crossref | GoogleScholarGoogle Scholar | 31285566PubMed |
Stöck M, Ustinova J, Lamatsch DK, Schartl M, Perrin N, Moritz C (2010) A vertebratestandard reference reproductive system involving three ploidy levels: hybrid origin of triploids in a contact zone of diploid and tetraploid palearctic green toads (Bufo viridis subgroup). Evolution 64, 944–959.
| A vertebratestandard reference reproductive system involving three ploidy levels: hybrid origin of triploids in a contact zone of diploid and tetraploid palearctic green toads (Bufo viridis subgroup).Crossref | GoogleScholarGoogle Scholar | 19863582PubMed |
Sweet R (1826) ‘Sweet’s Hortus Britannicus.’ (J. Ridgway: London, UK)
Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (2018) ‘International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) Regnum Vegetabile’, vol. 159. (Koeltz Botanical Books: Glashütten, Germany)
| Crossref |
Tzvelev NN (1990) Zametki o nekotorykh slozhnotsvetnykh (Asteraceae) evropeiskoi hasti SSSR. [Notae de Asteraceis nonnullis partis europaeae URSS.]. Novosti sistematiki vysshikh rastenii 27, 145–152.
Ventenat EP (1803) ‘Jardin de la Malmaison.’ (De l’imprimerie de Crapelet: Paris, France)Willis
Willis JH (1973) ‘A handbook to plants in Victoria.’ (Melbourne University Press: Melbourne, Vic., Australia)
Wilson PG (2008) Coronidium, a new Australian genus in the Gnaphalieae (Asteraceae). Nuytsia 18, 295–329.
Wilson PG (2017) An examination of the Australian genus Xerochrysum (Asteraceae: Gnaphalieae). Nuytsia 28, 11–38.