Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Arid Australia as a source of plant diversity: the origin and climatic evolution of Ptilotus (Amaranthaceae)

Timothy A. Hammer https://orcid.org/0000-0003-3816-7933 A B C G , Michael Renton A D , Ladislav Mucina E F and Kevin R. Thiele https://orcid.org/0000-0002-6658-6636 A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

C State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA 5000, Australia.

D School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

E Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.

F Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa.

G Corresponding author. Email: timothy.hammer@adelaide.edu.au

Australian Systematic Botany 34(6) 570-586 https://doi.org/10.1071/SB21012
Submitted: 13 April 2021  Accepted: 18 August 2021   Published: 14 September 2021

Abstract

In the present study, we tested the chronological and geographic origins of the mostly arid Australian Ptilotus (Amaranthaceae) and its close relatives (i.e. the ‘aervoids’) by reconstructing a dated phylogeny with near-comprehensive sampling for Ptilotus and estimating ancestral geographic ranges. We investigated climatic niche evolution within Ptilotus and identified likely climatic origins and subsequent niche shifts by reconstructing ancestral states of climatic variables on the phylogeny, which was visualised using a phyloecospace approach. Geospatial analyses were employed to identify probable diversification hotspots within Australia. We inferred that the aervoids originated in Oligocene Africa–Asia and that Ptilotus arrived in northern Australia by dispersal in the Early Miocene. Subsequent diversification of Ptilotus was rapid, giving rise to all major clades in the western Eremaean by the time of an aridification pulse in the Middle Miocene. Climatic niche shifts from the arid Eremaean into monsoonal northern and temperate southern Australia are apparent for multiple independent species groups. Our analyses support the hypothesis that a pre-adaptation to aridity and early arrival in an aridifying Australia were integral to the success of Ptilotus, and that the Eremaean has been a source of biodiversity in the genus and for independent radiations into neighbouring climatic zones.

Keywords: Amaranthaceae, Australia, ecology, molecular dating, phylogeography.


References

Anderson BM, Thiele KR, Grierson PF, Krauss SL, Nevill PG, Small ID, Zhong X, Barrett MD (2019) Recent range expansion in Australian hummock grasses (Triodia) inferred using genotyping-by-sequencing. AoB Plants 11, plz017
Recent range expansion in Australian hummock grasses (Triodia) inferred using genotyping-by-sequencing.Crossref | GoogleScholarGoogle Scholar | 31037212PubMed |

Ariati SR, Murphy DJ, Udovicic F, Ladiges PY (2006) Molecular phylogeny of three groups of acacias (Acacia subgenus Phyllodineae) in arid Australia based on the internal and external transcribed spacer regions of nrDNA. Systematics and Biodiversity 4, 417–426.
Molecular phylogeny of three groups of acacias (Acacia subgenus Phyllodineae) in arid Australia based on the internal and external transcribed spacer regions of nrDNA.Crossref | GoogleScholarGoogle Scholar |

Baldo L, Pretus JL, Riera JL, Musilova Z, Bitja Nyom AR, Salzburger W (2017) Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. The ISME Journal 11, 1975–1987.
Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes.Crossref | GoogleScholarGoogle Scholar | 28509910PubMed |

Bapst DW (2012) Paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3, 803–807.
Paleotree: an R package for paleontological and phylogenetic analyses of evolution.Crossref | GoogleScholarGoogle Scholar |

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen–Geiger climate classification maps at 1-km resolution. Scientific Data 5, 180214
Present and future Köppen–Geiger climate classification maps at 1-km resolution.Crossref | GoogleScholarGoogle Scholar | 30375988PubMed |

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Brennan IG, Keogh JS (2018) Miocene biome turnover drove conservative body size evolution across Australian vertebrates. Proceedings of the Royal Society of London – B. Biological Sciences 285, 20181474
Miocene biome turnover drove conservative body size evolution across Australian vertebrates.Crossref | GoogleScholarGoogle Scholar |

Brennan IG, Oliver PM (2017) Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution 71, 1352–1365.
Mass turnover and recovery dynamics of a diverse Australian continental radiation.Crossref | GoogleScholarGoogle Scholar | 28213971PubMed |

Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams AJ, Copper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |

Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD, Keogh JS, Melville J, Moritz C, Porch N, Sniderman JMK, Sunnucks P, Weston PH (2011) Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |

Byrne M, Joseph L, Yeates DK, Roberts JD, Edwards D (2018) Evolutionary history. In ‘On the Ecology of Australia’s Arid Zone’. (Ed. H Lambers) pp. 45–75. (Springer International Publishing) 10.1007/978-3-319-93943-8_3

Cracraft J (1986) Origin and evolution of continental biotas: speciation and historical congruence within the Australian avifauna. Evolution 40, 977–996.
Origin and evolution of continental biotas: speciation and historical congruence within the Australian avifauna.Crossref | GoogleScholarGoogle Scholar | 28556211PubMed |

Cracraft J (1994) Species diversity, biogeography, and the evolution of biotas. Integrative and Comparative Biology 34, 33–47.
Species diversity, biogeography, and the evolution of biotas.Crossref | GoogleScholarGoogle Scholar |

Crayn DM, Costion C, Harrington MG (2015) The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. Journal of Biogeography 42, 11–24.
The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics.Crossref | GoogleScholarGoogle Scholar |

Crisp MD, Cook LG (2013) How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annual Review of Ecology, Evolution, and Systematics 44, 303–324.
How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective.Crossref | GoogleScholarGoogle Scholar |

Crisp M, Cook L, Steane D (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Proceedings of the Royal Society of London – B. Biological Sciences 359, 1551–1571.
Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Crossref | GoogleScholarGoogle Scholar |

Crisp MD, Arroyo MT, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458, 754–756.
Phylogenetic biome conservatism on a global scale.Crossref | GoogleScholarGoogle Scholar | 19219025PubMed |

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

Department of the Environment (2019) Australia’s bioregions (IBRA), IBRA 7. (Commonwealth of Australia) Available at https://www.environment.gov.au/land/nrs/science/ibra#ibra [Verified 29 January 2021]

Di Vincenzo V, Gruenstaeudl M, Nauheimer L, Wondafrash M, Kamau P, Demissew S, Borsch T (2018) Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory. Annals of Botany 122, 69–85.
Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory.Crossref | GoogleScholarGoogle Scholar | 29688271PubMed |

Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the United States of America 105, 11549–11555.
A phylogenetic perspective on the distribution of plant diversity.Crossref | GoogleScholarGoogle Scholar | 18695216PubMed |

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Ebach MC, Murphy DJ, González-Orozco CE, Miller JT (2015) A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas. Phytotaxa 208, 261–277.
A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas.Crossref | GoogleScholarGoogle Scholar |

Edwards EJ, Donoghue MJ (2013) Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. Journal of Experimental Botany 64, 4047–4052.
Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation.Crossref | GoogleScholarGoogle Scholar | 23913955PubMed |

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation 61, 1–10.
Conservation evaluation and phylogenetic diversity.Crossref | GoogleScholarGoogle Scholar |

Gómez JM, Perfectti F, Lorite J (2015) The role of pollinators in floral diversification in a clade of generalist flowers. Evolution 69, 863–878.
The role of pollinators in floral diversification in a clade of generalist flowers.Crossref | GoogleScholarGoogle Scholar | 25757195PubMed |

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 20525638PubMed |

Hammer T, Davis R, Thiele K (2015) A molecular framework phylogeny for Ptilotus (Amaranthaceae): evidence for the rapid diversification of an arid Australian genus. Taxon 64, 272–285.
A molecular framework phylogeny for Ptilotus (Amaranthaceae): evidence for the rapid diversification of an arid Australian genus.Crossref | GoogleScholarGoogle Scholar |

Hammer TA, Davis RW, Thiele KR (2018a) A key to Ptilotus (Amaranthaceae) in Western Australia. Nuytsia 29, 217–227.

Hammer TA, Macintyre PD, Nge FJ, Davis RW, Mucina L, Thiele KR (2018b) The noble and the exalted: A multidisciplinary approach to resolving a taxonomic controversy within Ptilotus (Amaranthaceae). Australian Systematic Botany 31, 262–280.
The noble and the exalted: A multidisciplinary approach to resolving a taxonomic controversy within Ptilotus (Amaranthaceae).Crossref | GoogleScholarGoogle Scholar |

Hammer TA, Zhong X, Colas des Francs–Small C, Nevill PG, Small ID, Thiele KR (2019) Resolving intergeneric relationships in the aervoid clade and the backbone of Ptilotus (Amaranthaceae): evidence from whole plastid genomes and morphology. Taxon 68, 297–314.
Resolving intergeneric relationships in the aervoid clade and the backbone of Ptilotus (Amaranthaceae): evidence from whole plastid genomes and morphology.Crossref | GoogleScholarGoogle Scholar |

Hancock LP, Obens F, Moore AJ, Thiele K, de Vos JM, West J, Holtom JAM, Edwards EJ (2018) Phylogeny, evolution, and biogeographic history of Calandrinia (Montiaceae). American Journal of Botany 105, 1021–1034.
Phylogeny, evolution, and biogeographic history of Calandrinia (Montiaceae).Crossref | GoogleScholarGoogle Scholar | 29995314PubMed |

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58, 367–380.
Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times.Crossref | GoogleScholarGoogle Scholar |

Jabaily RS, Shepherd KA, Gardner AG, Gustafsson MH, Howarth DG, Motley TJ (2014) Historical biogeography of the predominantly Australian plant family Goodeniaceae. Journal of Biogeography 41, 2057–2067.
Historical biogeography of the predominantly Australian plant family Goodeniaceae.Crossref | GoogleScholarGoogle Scholar |

Joyce EM, Thiele KR, Slik JWF, Crayn DM (2021a) Plants will cross the lines: climate and available land mass are the major determinants of phytogeographical patterns in the Sunda–Sahul Convergence Zone. Biological Journal of the Linnean Society. Linnean Society of London 132, 374–387.
Plants will cross the lines: climate and available land mass are the major determinants of phytogeographical patterns in the Sunda–Sahul Convergence Zone.Crossref | GoogleScholarGoogle Scholar |

Joyce EM, Pannell CM, Rossetto M, Yap JYS, Thiele KR, Wilson PD, Crayn DM (2021b) Molecular phylogeography reveals two geographically and temporally separated floristic exchange tracks between Southeast Asia and northern Australia. Journal of Biogeography 48, 1213–1227.
Molecular phylogeography reveals two geographically and temporally separated floristic exchange tracks between Southeast Asia and northern Australia.Crossref | GoogleScholarGoogle Scholar |

Kadereit G, Freitag H (2011) Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): implications for biogeography, evolution of C4‐photosynthesis and taxonomy. Taxon 60, 51–78.
Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): implications for biogeography, evolution of C4‐photosynthesis and taxonomy.Crossref | GoogleScholarGoogle Scholar |

Kadereit G, Gotzek D, Jacobs S, Freitag H (2005) Origin and age of Australian Chenopodiaceae. Organisms, Diversity & Evolution 5, 59–80.
Origin and age of Australian Chenopodiaceae.Crossref | GoogleScholarGoogle Scholar |

Kadereit G, Ackerly D, Pirie MD (2012) A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proceedings of the Royal Society of London – B. Biological Sciences 279, 3304–3311.
A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.).Crossref | GoogleScholarGoogle Scholar |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Keighery G (2011) The naturalised vascular plants of the Pilbara region, Western Australia. Records of the Western Australian Museum 78, 299–311.
The naturalised vascular plants of the Pilbara region, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Khan AM, Ali SI, Faruqi SA (1970) Breeding system and population structure in the Aerva javanica complex. Phyton 14, 135–145.

Kozak KH, Wiens JJ (2010) Accelerated rates of climatic‐niche evolution underlie rapid species diversification. Ecology Letters 13, 1378–1389.
Accelerated rates of climatic‐niche evolution underlie rapid species diversification.Crossref | GoogleScholarGoogle Scholar | 20875038PubMed |

Ladiges PY, Marks CE, Nelson G (2011) Biogeography of Nicotiana section Suaveolentes (Solanaceae) reveals geographical tracks in arid Australia. Journal of Biogeography 38, 2066–2077.
Biogeography of Nicotiana section Suaveolentes (Solanaceae) reveals geographical tracks in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Laffan SW, Lubarsky E, Rosauer DF (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33, 643–647.
Biodiverse, a tool for the spatial analysis of biological and related diversity.Crossref | GoogleScholarGoogle Scholar |

Lanfear R, Calcott B, Ho SY, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Lawver G, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198, 11–37.
Evolution of Cenozoic seaways in the circum-Antarctic region.Crossref | GoogleScholarGoogle Scholar |

Leach GJ, Townsend CC, Harley MM (1993) Omegandra, a new genus of Amaranthaceae from Australia. Kew Bulletin 48, 787–793.
Omegandra, a new genus of Amaranthaceae from Australia.Crossref | GoogleScholarGoogle Scholar |

Lee TRC, Cameron SL, Evans TA, Ho SYW, Lo N (2015) The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Molecular Phylogenetics and Evolution 82, 234–244.
The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers.Crossref | GoogleScholarGoogle Scholar |

Lee MSY, Sanders KL, King B, Palci A (2016) Diversification rates and phenotypic evolution in venomous snakes (Elapidae). Royal Society Open Science 3, 150277
Diversification rates and phenotypic evolution in venomous snakes (Elapidae).Crossref | GoogleScholarGoogle Scholar |

Limarino TO, Borsch T (2020) Gomphrena (Amaranthaceae, Gomphrenoideae) diversified as a C4 lineage in the New World tropics with specializations in floral and inflorescence morphology, and an escape to Australia. Willdenowia 50, 345–381.
Gomphrena (Amaranthaceae, Gomphrenoideae) diversified as a C4 lineage in the New World tropics with specializations in floral and inflorescence morphology, and an escape to Australia.Crossref | GoogleScholarGoogle Scholar |

Louys J, Montanari S, Plummer T, Hertel F, Bishop LC (2013) Evolutionary divergence and convergence in shape and size within African antelope proximal phalanges. Journal of Mammalian Evolution 20, 239–248.
Evolutionary divergence and convergence in shape and size within African antelope proximal phalanges.Crossref | GoogleScholarGoogle Scholar |

Mao X, Retallack G (2019) Late Miocene drying of central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 514, 292–304.
Late Miocene drying of central Australia.Crossref | GoogleScholarGoogle Scholar |

Martin HA (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66, 533–563.
Cenozoic climatic change and the development of the arid vegetation in Australia.Crossref | GoogleScholarGoogle Scholar |

Mathews S, Bonser SP (2005) Life histories, ecological tolerance limits, and the evolution of geographic range size in Eucalyptus (Myrtaceae). Australian Journal of Botany 53, 501–508.
Life histories, ecological tolerance limits, and the evolution of geographic range size in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Matzke NJ (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5, 242–248.
Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing.Crossref | GoogleScholarGoogle Scholar |

Matzke NJ (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Systematic Biology 63, 951–970.
Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades.Crossref | GoogleScholarGoogle Scholar | 25123369PubMed |

McDougall I, Chamalaun FG (1969) Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. Geological Society of America Bulletin 80, 1419–1442.
Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Miller AG (1996) Amaranthaceae. In ‘Flora of Arabian Peninsula and Socotra’. (Eds AG Miller, TA Cope) Vol. 1, pp. 295–299. (Edinburgh University Press: Edinburgh, UK)

Miller MA, Pfeiffer W, Schwartz T (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE.) 10.1109/GCE.2010.5676129

Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications 5, 4473
Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia.Crossref | GoogleScholarGoogle Scholar | 25034856PubMed |

Nge FJ, Biffin E, Thiele KR, Waycott M (2020) Extinction pulse at Eocene–Oligocene boundary drives diversification dynamics of two Australian temperate floras. Proceedings of the Royal Society of London – B. Biological Sciences 287, 20192546
Extinction pulse at Eocene–Oligocene boundary drives diversification dynamics of two Australian temperate floras.Crossref | GoogleScholarGoogle Scholar |

Oliver PM, Hugall AF (2017) Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota. Nature Ecology & Evolution 1, 1896–1902.
Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota.Crossref | GoogleScholarGoogle Scholar |

Palmer J (1998) A taxonomic revision of Gomphrena (Amaranthaceae) in Australia. Australian Systematic Botany 11, 73–151.
A taxonomic revision of Gomphrena (Amaranthaceae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Paradis E, Schliep K (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528.
Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.Crossref | GoogleScholarGoogle Scholar | 30016406PubMed |

Pepper M, Keogh JS (2021) Life in the ‘dead heart’ of Australia: the geohistory of the Australian deserts and its impact on genetic diversity of arid zone lizards. Journal of Biogeography 48, 716–746.
Life in the ‘dead heart’ of Australia: the geohistory of the Australian deserts and its impact on genetic diversity of arid zone lizards.Crossref | GoogleScholarGoogle Scholar |

Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348.
Climatic niche shifts are rare among terrestrial plant invaders.Crossref | GoogleScholarGoogle Scholar | 22422981PubMed |

Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London – B. Biological Sciences 268, 2383–2389.
The niche of higher plants: evidence for phylogenetic conservatism.Crossref | GoogleScholarGoogle Scholar |

Rabosky DL, Donnellan SC, Grundler M, Lovette IJ (2014a) Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Systematic Biology 63, 610–627.
Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards.Crossref | GoogleScholarGoogle Scholar | 24682412PubMed |

Rabosky DL, Grundler MC, Anderson CJ, Title PO, Shi JJ, Brown JW, Huang H, Larson JG (2014b) BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution 5, 701–707.
BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarisation in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar | 18253896PubMed |

Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
Phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |

Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Schenk JJ (2016) Consequences of secondary calibrations on divergence time estimates. PLoS One 11, e0148228
Consequences of secondary calibrations on divergence time estimates.Crossref | GoogleScholarGoogle Scholar | 26824760PubMed |

Shepherd KA, Waycott M, Calladine A (2004) Radiation of the Australian Salicornioideae (Chenopodiaceae) – BASED on evidence from nuclear and chloroplast DNA sequence. American Journal of Botany 91, 1387–1397.
Radiation of the Australian Salicornioideae (Chenopodiaceae) – BASED on evidence from nuclear and chloroplast DNA sequence.Crossref | GoogleScholarGoogle Scholar | 21652372PubMed |

Shi JJ, Rabosky DL (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545.
Speciation dynamics during the global radiation of extant bats.Crossref | GoogleScholarGoogle Scholar | 25958922PubMed |

Sidlauskas B (2008) Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156.
Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach.Crossref | GoogleScholarGoogle Scholar | 18786183PubMed |

Sun J, Ni X, Bi S, Wu W, Ye J, Meng J, Windley BF (2015) Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene boundary in Asia. Scientific Reports 4, 7463
Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene boundary in Asia.Crossref | GoogleScholarGoogle Scholar |

Tang Y, Horikoshi M, Li W (2016) ggfortify: unified interface to visualize statistical result of popular R packages. The R Journal 8, 474–489.
ggfortify: unified interface to visualize statistical result of popular R packages.Crossref | GoogleScholarGoogle Scholar |

Thiv M, Thulin M, Kilian N, Linder HP (2006) Eritreo-Arabian affinities of the Socotran flora as revealed from the molecular phylogeny of Aerva (Amaranthaceae). Systematic Botany 31, 560–570.
Eritreo-Arabian affinities of the Socotran flora as revealed from the molecular phylogeny of Aerva (Amaranthaceae).Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Crisp MD, Külheim C, Lam KE, Nelson LA, Yeates DK, Miller JT (2019) A dated molecular perspective of eucalypt taxonomy, evolution and diversification. Australian Systematic Botany 32, 29–48.
A dated molecular perspective of eucalypt taxonomy, evolution and diversification.Crossref | GoogleScholarGoogle Scholar |

Toon A, Crisp MD, Gamage H, Mant J, Morris DC, Schmidt S, Cook LG (2015) Key innovation or adaptive change? A test of leaf traits using Triodiinae in Australia. Scientific Reports 5, 12398
Key innovation or adaptive change? A test of leaf traits using Triodiinae in Australia.Crossref | GoogleScholarGoogle Scholar | 26215163PubMed |

Townsend CC (1974) Notes on Amaranthaceae: 2. Kew Bulletin 29, 461–475.
Notes on Amaranthaceae: 2.Crossref | GoogleScholarGoogle Scholar |

Townsend CC (1985) Amaranthaceae. In ‘Flora of Tropical East Africa’. (Ed. RM Polhill) pp. 1–136. (Balkema: Rotterdam, Netherlands)

Upton BGJ, Wadsworth WJ, Newman TC (1967) The petrology of Rodriguez Island, Indian Ocean. The American Association of Petroleum Geologists Bulletin 78, 1495–1506.
The petrology of Rodriguez Island, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Van Steenis CGGJ (1979) Plant-geography of east Malesia. Botanical Journal of the Linnean Society 79, 97–178.
Plant-geography of east Malesia.Crossref | GoogleScholarGoogle Scholar |

Waselkov KE, Boleda AS, Olsen KM (2018) A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Systematic Botany 43, 439–458.
A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions.Crossref | GoogleScholarGoogle Scholar |

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics 33, 475–505.
Phylogenies and community ecology.Crossref | GoogleScholarGoogle Scholar |

Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100.
Phylocom: software for the analysis of phylogenetic community structure and trait evolution.Crossref | GoogleScholarGoogle Scholar | 18678590PubMed |

Wickham H (2016) ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York, NY, USA)

Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36, 519–539.
Niche conservatism: integrating evolution, ecology, and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey WG, Jochimsen D, Oswald BP, Robertson J, Sarver BAJ, Schenk JJ, Spear SF, Harmon LJ (2010) Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23, 1581–1596.
Ecological opportunity and the origin of adaptive radiations.Crossref | GoogleScholarGoogle Scholar | 20561138PubMed |

Yu Y, Harris AJ, Blair C, He XJ (2015) RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87, 46–49.
RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography.Crossref | GoogleScholarGoogle Scholar | 25819445PubMed |