Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review

Muaz Ameen https://orcid.org/0000-0003-1388-2113 A , Asma Zafar A , Athar Mahmood https://orcid.org/0000-0003-4473-1668 B * , Muhammad Anjum Zia C , Kashif Kamran D , Muhammad Mansoor Javaid E , Muhammad Yasin E and Bilal Ahmad Khan E
+ Author Affiliations
- Author Affiliations

A Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.

B Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.

C Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.

D Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.

E Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan.

* Correspondence to: athar.mahmood@uaf.edu.pk

Handling Editor: Sajid Fiaz

Functional Plant Biology 51, FP23248 https://doi.org/10.1071/FP23248
Submitted: 27 October 2023  Accepted: 9 January 2024  Published: 5 February 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana, a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana. Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas, as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR, CBF, SNAT, ASMT, PIN, PR1, PDF1.2 and HSFA) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.

Keywords: Arabidopsis thaliana, autophagy, gene expression, hormones, infection, melatonin, ROS, stress.

References

AbuQamar S, Moustafa K, Tran LS (2017) Mechanisms and strategies of plant defense against Botrytis cinerea. Critical Reviews in Biotechnology 37(2), 262-274.
| Crossref | Google Scholar |

Adhikari L, Baral R, Paudel D, Min D, Makaju SO, Poudel HP, Acharya JP, Missaoui AM (2022) Cold stress in plants: strategies to improve cold tolerance in forage species. Plant Stress 4, 100081.
| Crossref | Google Scholar |

Ahammed GJ, Li X (2022) Melatonin-induced detoxification of organic pollutants and alleviation of phytotoxicity in selected horticultural crops. Horticulturae 8(12), 1142.
| Crossref | Google Scholar |

Ahammed GJ, Xu W, Liu A, Chen S (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany 161, 303-311.
| Crossref | Google Scholar |

Ahammed GJ, Mao Q, Yan Y, Wu M, Wang Y, Ren J, Guo P, Liu A, Chen S (2020) Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to fusarium wilt in cucumber. Phytopathology 110(5), 999-1009.
| Crossref | Google Scholar |

Ahmad I, Munsif F, Mihoub A, Jamal A, Saeed MF, Babar S, Fawad M, Zia A (2022) Beneficial effect of melatonin on growth and chlorophyll content in wheat (Triticum aestivum L.) grown under salt stress conditions. Gesunde Pflanzen 74(4), 997-1009.
| Crossref | Google Scholar |

Alam MN, Yang L, Yi X, Wang Q, Robin AHK (2022) Role of melatonin in inducing the physiological and biochemical processes associated with heat stress tolerance in tall fescue (Festuca arundinaceous). Journal of Plant Growth Regulation 41(7), 2759-2768.
| Crossref | Google Scholar |

Alizadeh N, Dianatkhah M, Alimohamadi Y, Moradi H, Akbarpour S, Akrami M, Mansouri F, Faraji N, Rezaie Z, Alizadeh M, Hosamirudsari H (2022) High dose melatonin as an adjuvant therapy in intubated patients with COVID-19: a randomized clinical trial. Journal of Taibah University Medical Sciences 17(3), 454-460.
| Crossref | Google Scholar |

Altaf MA, Shahid R, Ren M-X, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen J-T (2021) Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses. Physiologia Plantarum 172(2), 820-846.
| Crossref | Google Scholar |

Aluko OO, Li C, Wang Q, Liu H (2021) Sucrose utilization for improved crop yields: a review article. International Journal of Molecular Sciences 22(9), 4704.
| Crossref | Google Scholar |

Ameen M, Mahmood A, Ahmad M, Mansoor Javaid M, Nadeem MA, Asif M, Balal RM, Khan BA (2023a) Impacts of climate change on fruit physiology and quality. In ‘Climate-Resilient agriculture: crop responses and agroecological perspectives’. (Ed. M Hasanuzzaman) pp. 93–124. (Springer International Publishing: Cham, Switzerland)

Ameen M, Zafar A, Javaid MM, Zia MA, Mahmood A, Naqve M, Bibi S (2023b) Climate-resilient technology for maize production. In ‘Climate-resilient agriculture: agro-biotechnological advancement for crop production’. (Ed. M Hasanuzzaman) pp. 157–188. (Springer International Publishing: Cham, Switzerland)

Anderson AJ, Kim YC (2021) The plant-stress metabolites, hexanoic aacid and melatonin, are potential “Vaccines” for plant health promotion. Plant Pathology Journal 37(5), 415-427.
| Crossref | Google Scholar |

Arabia A, Muñoz P, Pallarés N, Munné-Bosch S (2023) Experimental approaches in studying active biomolecules modulating fruit ripening: melatonin as a case study. Plant Physiology 192, 1747-1767.
| Crossref | Google Scholar | PubMed |

Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Advances in Botany 2014, 815769.
| Crossref | Google Scholar |

Arnao MB, Hernández-Ruiz J (2015) Chapter 11 – Phytomelatonin: searching for plants with high levels for use as a natural nutraceutical. In ‘Studies in natural products chemistry’. (Ed. Atta-ur-Rahman) pp. 519–545. (Elsevier: Amsterdam, Netherlands)

Arora D, Bhatla SC (2017) Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine 106, 315-328.
| Crossref | Google Scholar |

Ayyaz A, Shahzadi AK, Fatima S, Yasin G, Zafar ZU, Athar H-u-R, Farooq MA (2022) Uncovering the role of melatonin in plant stress tolerance. Theoretical and Experimental Plant Physiology 34(3), 335-346.
| Crossref | Google Scholar |

Back K (2021) Melatonin metabolism, signaling and possible roles in plants. The Plant Journal 105(2), 376-391.
| Crossref | Google Scholar |

Badria FA (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. Journal of Medicinal Food 5(3), 153-157.
| Crossref | Google Scholar |

Bai J, Song MJ, Gao J, Li G (2022) Whole genome duplication and dispersed duplication characterize the evolution of the plant PINOID gene family across plant species. Gene 829, 146494.
| Crossref | Google Scholar |

Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. Journal of Pineal Research 56(3), 238-245.
| Crossref | Google Scholar |

Banerjee M, Sharma S (2021) Serotonin and melatonin: role in rhizogenesis, root development and signaling. In ‘Rhizobiology: molecular physiology of plant roots’. (Eds S Mukherjee, F Baluška) pp. 307–332. (Springer International Publishing: Cham, Switzerland)

Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proceedings of the National Academy of Sciences 107(43), 18724-18728.
| Crossref | Google Scholar |

Bhardwaj K, Raina M, Sanfratello GM, Pandey P, Singh A, Rajwanshi R, Negi NP, Rustagi A, Khushboo , Kumar D (2022) Exogenous melatonin counteracts salinity and cadmium stress via photosynthetic machinery and antioxidant modulation in Solanum lycopersicum L. Journal of Plant Growth Regulation 42, 6332-6348.
| Crossref | Google Scholar |

Bhattacharjee P, Chakraborty S (2018) Neurotransmitters in edible plants. In ‘Neurotransmitters in plants: perspectives and applications’. (Eds A Ramakrishna, VV Roshchina) pp. 1–21. (CRC Press: Boca Raton, FL, USA)

Bhattacharjee A, Dey BK (2018) Phytomelatonin: a comprehensive literature review and recent advance on medicinal meadow. International Journal of Hydrology 2(3), 396-403.
| Crossref | Google Scholar |

Bhowal B, Bhattacharjee A, Goswami K, Sanan-Mishra N, Singla-Pareek SL, Kaur C, Sopory S (2021) Serotonin and melatonin biosynthesis in plants: genome-wide identification of the genes and their expression reveal a conserved role in stress and development. International Journal of Molecular Sciences 22(20), 11034.
| Crossref | Google Scholar |

Blanco-Ulate B, Amrine KCH, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, Cantu D (2015) Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology 169(4), 2422-2443.
| Crossref | Google Scholar |

Blask DE, Dauchy RT, Sauer LA, Krause JA (2004) Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Carcinogenesis 25(6), 951-960.
| Crossref | Google Scholar |

Bonomini F, Borsani E, Favero G, Rodella LF, Rezzani R (2018) Dietary melatonin supplementation could be a promising preventing/therapeutic approach for a variety of liver diseases. Nutrients 10(9), 1135.
| Crossref | Google Scholar |

Bose SK, Howlader P (2020) Melatonin plays multifunctional role in horticultural crops against environmental stresses: a review. Environmental and Experimental Botany 176, 104063.
| Crossref | Google Scholar |

Brengi SH, Khedr AAEM, Abouelsaad IA (2022) Effect of melatonin or cobalt on growth, yield and physiological responses of cucumber (Cucumis sativus L.) plants under salt stress. Journal of the Saudi Society of Agricultural Sciences 21(1), 51-60.
| Crossref | Google Scholar |

Byeon Y, Back K (2014) Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. Journal of Pineal Research 56(2), 189-195.
| Crossref | Google Scholar |

Byeon Y, Lee H-J, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. Journal of Pineal Research 60(1), 65-73.
| Crossref | Google Scholar |

Bäuerlein FJB, Baumeister W (2021) Towards visual proteomics at high resolution. Journal of Molecular Biology 433(20), 167187.
| Crossref | Google Scholar |

Chang J, Guo Y, Li J, Su Z, Wang C, Zhang R, Wei C, Ma J, Zhang X, Li H (2021) Positive interaction between H2O2 and Ca2+ mediates melatonin-induced CBF pathway and cold tolerance in watermelon (Citrullus lanatus L.). Antioxidants 10(9), 1457.
| Crossref | Google Scholar |

Chang Q, Zhang L, Chen S, Gong M, Liu L, Hou X, Mi Y, Wang X, Wang J, Zhang Y, Sun Y (2023) Exogenous melatonin enhances the yield and secondary metabolite contents of Prunella vulgaris by modulating antioxidant system, root architecture and photosynthetic capacity. Plants 12(5), 1129.
| Crossref | Google Scholar |

Chen G, Huo Y, Tan D-X, Liang Z, Zhang W, Zhang Y (2003) Melatonin in Chinese medicinal herbs. Life sciences 73(1), 19-26.
| Crossref | Google Scholar |

Chen C-Q, Fichna J, Bashashati M, Li Y-Y, Storr M (2011) Distribution, function and physiological role of melatonin in the lower gut. World Journal of Gastroenterology: WJG 17(34), 3888-3898.
| Crossref | Google Scholar |

Chen L, Lu B, Liu L, Duan W, Jiang D, Li J, Zhang K, Sun H, Zhang Y, Li C, Bai Z (2021) Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry 162, 506-516.
| Crossref | Google Scholar |

Chen C, Zhang X, Wei X, Zhu Y, Chen W, Han Y (2022) Postharvest biological control of Botrytis cinerea and the mechanisms underlying the induction of disease resistance in grapes by Lactobacillus plantarum CM-3. Biological Control 172, 104982.
| Crossref | Google Scholar |

Chen F, Li Y, Zia-ur-Rehman M, Hussain SM, Qayyum MF, Rizwan M, Alharby HF, Alabdallah NM, Alharbi BM, Ali S (2023a) Combined effects of zinc oxide nanoparticles and melatonin on wheat growth, chlorophyll contents, cadmium (Cd) and zinc uptake under Cd stress. Science of The Total Environment 864, 161061.
| Crossref | Google Scholar |

Chen J, Zhang Y, Yin H, Liu W, Hu X, Li D, Lan C, Gao L, He Z, Cui F, Fernie AR, Chen W (2023b) The pathway of melatonin biosynthesis in common wheat (Triticum aestivum). Journal of Pineal Research 74(2), e12841.
| Crossref | Google Scholar |

Cheng G, Ma T, Deng Z, Gutiérrez-Gamboa G, Ge Q, Xu P, Zhang Q, Zhang J, Meng J, Reiter RJ, Fang Y, Sun X (2021) Plant-derived melatonin from food: a gift of nature. Food & Function 12(7), 2829-2849.
| Crossref | Google Scholar |

Cocetta G, Natalini A (2022) Ethylene: management and breeding for postharvest quality in vegetable crops. A review. Frontiers in Plant Science 13, 968315.
| Crossref | Google Scholar |

Debnath B, Li M, Liu S, Pan T, Ma C, Qiu D (2020) Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato. Ecotoxicology and Environmental Safety 200, 110720.
| Crossref | Google Scholar |

Ding F, Ren L, Xie F, Wang M, Zhang S (2022) Jasmonate and melatonin act synergistically to potentiate cold tolerance in tomato plants. Frontiers in Plant Science 12, 763284.
| Crossref | Google Scholar |

Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV (2020) Singlet oxygen in plants: generation, detection, and signaling roles. International Journal of Molecular Sciences 21(9), 3237.
| Crossref | Google Scholar |

Dogra V, Kim C (2019) Chloroplast protein homeostasis is coupled with retrograde signaling. Plant Signaling & Behavior 14(11), 1656037.
| Crossref | Google Scholar |

EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, Waleed M, Reginato M, Battaglia M, Ahmed S, Rehman A, Arif M, Athar H-U-R, Ratnasekera D, Danish S, Raza MA, Rajendran K, Mushtaq M, Skalicky M, Brestic M, Soufan W, Fahad S, Pandey S, Kamran M, Datta R, Abdelhamid MT (2022) Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy 4, 765068.
| Crossref | Google Scholar |

Erland LAE, Saxena PK (2018) Melatonin in plant morphogenesis. In Vitro Cellular & Developmental Biology – Plant 54(1), 3-24.
| Crossref | Google Scholar |

Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK (2016) Melatonin in plants and plant culture systems: variability, stability and efficient quantification. Frontiers in Plant Science 7, 1721.
| Crossref | Google Scholar |

Faghih S, Zamani Z, Fatahi R, Liaghat A (2019) Effects of deficit irrigation and kaolin application on vegetative growth and fruit traits of two early ripening apple cultivars. Biological Research 52(1), 43.
| Crossref | Google Scholar |

Fan J, Xie Y, Zhang Z, Chen L (2018) Melatonin: a multifunctional factor in plants. International Journal of Molecular Sciences 19(5), 1528.
| Crossref | Google Scholar |

Feng X, Wang M, Zhao Y, Han P, Dai Y (2014) Melatonin from different fruit sources, functional roles, and analytical methods. Trends in Food Science & Technology 37(1), 21-31.
| Crossref | Google Scholar |

Feng W, Li J, Long S, Wei S (2019) A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. Plant Science 278, 20-31.
| Crossref | Google Scholar |

Ferreira-Saab M, Formey D, Torres M, Aragón W, Padilla EA, Tromas A, Sohlenkamp C, Schwan-Estrada KRF, Serrano M (2018) Compounds released by the biocontrol yeast Hanseniaspora opuntiae protect plants against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology 9, 1596.
| Crossref | Google Scholar |

Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima E, Baldwin IT, Erb M (2015) A Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. New Phytologist 208(2), 519-530.
| Crossref | Google Scholar | PubMed |

Gai W-X, Ma X, Li Y, Xiao J-J, Khan A, Li Q-H, Gong Z-H (2020) CaHsfA1d improves plant thermotolerance via regulating the expression of stress- and antioxidant-related genes. International Journal of Molecular Sciences 21(21), 8374.
| Crossref | Google Scholar | PubMed |

Gao H, Lu ZM, Yang Y, Wang DN, Yang T, Cao MM, Cao W (2018) Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry 245, 659-666.
| Crossref | Google Scholar | PubMed |

Gao W, Feng Z, Bai Q, He J, Wang Y (2019) Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. International Journal of Molecular Sciences 20(5), 1176.
| Crossref | Google Scholar | PubMed |

Gao Y, Chen H, Chen D, Hao G (2023) Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. Journal of Pineal Research 74(2), e12850.
| Crossref | Google Scholar | PubMed |

Garcia CP, Lamarque AL, Comba A, Berra MA, Silva RA, Labuckas DO, Das UN, Eynard AR, Pasqualini ME (2015) Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition 31(4), 570-577.
| Crossref | Google Scholar |

Gong X, Shi S, Dou F, Song Y, Ma F (2017) Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules 22(9), 1542.
| Crossref | Google Scholar |

Guan L, Li Y, Huang K, Cheng Z-M (2020) Auxin regulation and MdPIN expression during adventitious root initiation in apple cuttings. Horticulture Research 7, 143.
| Crossref | Google Scholar |

Gull T, Mahmood A, Shaheen C, Javaid MM, Zia MA, Naqve M, Bibi S, Nadeem MA, Ameen M, Nargis J, Khan SR (2023) Climate change and nutrient use efficiency of plants. In ‘Climate-resilient agriculture: crop responses and agroecological perspectives’. (Ed. M Hasanuzzaman) pp. 291–312. (Springer International Publishing: Cham, Switzerland)

Gunata M, Parlakpinar H, Acet HA (2020) Melatonin: a review of its potential functions and effects on neurological diseases. Revue Neurologique 176(3), 148-165.
| Crossref | Google Scholar | PubMed |

Gusain S, Joshi S, Joshi R (2023) Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plant Physiology and Biochemistry 197, 107646.
| Crossref | Google Scholar | PubMed |

Gökbayrak Z, Engin H, Kiraz H (2020) Effects of Melatonin and IAA on Adventitious Root Formation in Rootstock 5BB and cv. Cabernet Sauvignon (Vitis vinifera L.). Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23(4), 835-841.
| Google Scholar |

Hajihashemi S, Skalicky M, Brestic M, Pavla V (2020) Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. at seed germination stage. Plant Physiology and Biochemistry 154, 657-664.
| Crossref | Google Scholar |

Hartmann M, Zeier J (2019) N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Current Opinion in Plant Biology 50, 44-57.
| Crossref | Google Scholar | PubMed |

Hassan MU, Ghareeb RY, Nawaz M, Mahmood A, Shah AN, Abdel-Megeed A, Abdelsalam NR, Hashem M, Alamri S, Thabit MA, Qari SH (2022a) Melatonin: a vital pro-tectant for crops against heat stress: mechanisms and prospects. Agronomy 12(5), 1116.
| Crossref | Google Scholar |

Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HAS, Huang G, Skalicky M, Brestic M, Pandey S, El Sabagh A, Qari SH (2022b) Melatonin-induced protection against plant abiotic stress: mechanisms and prospects. Frontiers in Plant Science 13, 902694.
| Crossref | Google Scholar |

He H, He L-F (2020) Crosstalk between melatonin and nitric oxide in plant development and stress responses. Physiologia Plantarum 170(2), 218-226.
| Crossref | Google Scholar |

He F, Wu X, Zhang Q, Li Y, Ye Y, Li P, Chen S, Peng Y, Hardeland R, Xia Y (2021) Bacteriostatic potential of melatonin: therapeutic standing and mechanistic insights. Frontiers in Immunology 12, 683879.
| Crossref | Google Scholar | PubMed |

Herrera T, Aguilera Y, Rebollo-Hernanz M, Bravo E, Benítez V, Martínez-Sáez N, Arribas SM, del Castillo MD, Martín-Cabrejas MA (2018) Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT 89, 65-73.
| Crossref | Google Scholar |

Hoque MN, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain MS, Sayed MA, Hasan MT, Skalicky M, Li X, Brestič M (2021) Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. International Journal of Molecular Sciences 22(21), 11445.
| Crossref | Google Scholar |

Hussain S, Rasheed M, Saleem MH, Ahmed ZI, Hafeez A, Jilani G, Alamri S, Hashem M, Ali S (2022) Salt tolerance in maize with melatonin priming to achieve sustainability in yield in salt affected soils. Pakistan Journal of Botany 55, 19-35.
| Google Scholar |

Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T (2020) Ca2+/Calmodulin Complex Triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. Frontiers in Plant Science 11, 598327.
| Crossref | Google Scholar |

Islam MT, Mamun MA, Lee B-R, La VH, Jung W-J, Bae D-W, Kim T-H (2021) Role of salicylic acid signaling in the biotrophy-necrotrophy transition of Xanthomonas campestris pv. campestris infection in Brassica napus. Physiological and Molecular Plant Pathology 113, 101578.
| Crossref | Google Scholar |

Javaid MM, Abbas Z, Waheed H, Mahmood A, Abbas T, Amin MM, Asif M (2020) Studies on germination ecology and seedling characteristics of Cleome viscosa as affected by various environmental factors. Pakistan Journal of Botany 52(6), 1911-1919.
| Crossref | Google Scholar |

Johns NP, Johns J (2016) Bioavailability of dietary phytomelatonin in animals and humans. In ‘Serotonin and melatonin: their functional role in plants, food, phytomedicine, and human health’. (Eds GA Ravishankar, A Ramakrishna) pp. 355–366. (CRC Press: Boca Raton, FL, USA)

Johns J, Padumanonda T (2016) Melatonin in traditional herbal medicine. In ‘Serotonin and melatonin’. (Eds GA Ravishankar, A Ramakrishna) pp. 229–240. (CRC Press: Boca Raton, FL, USA)

Kashyap SP, Kumari N, Mishra P, Moharana DP, Aamir M (2021) Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: perspectives and challenges. Genetic Resources and Crop Evolution 68(6), 2207-2233.
| Crossref | Google Scholar |

Kennaway DJ (2020) Melatonin rich foods in our diet: food for thought or wishful thinking? Food & Function 11(11), 9359-9369.
| Crossref | Google Scholar |

Khan A, Numan M, Khan AL, Lee I-J, Imran M, Asaf S, Al-Harrasi A (2020a) Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants 9(4), 407.
| Crossref | Google Scholar | PubMed |

Khan MN, Khan Z, Luo T, Liu J, Rizwan M, Zhang J, Xu Z, Wu H, Hu L (2020b) Seed priming with gibberellic acid and melatonin in rapeseed: consequences for improving yield and seed quality under drought and non-stress conditions. Industrial Crops and Products 156, 112850.
| Crossref | Google Scholar |

Khan TA, Fariduddin Q, Nazir F, Saleem M (2020c) Melatonin in business with abiotic stresses in plants. Physiology and Molecular Biology of Plants 26(10), 1931-1944.
| Crossref | Google Scholar |

Khan M, Ali S, Manghwar H, Saqib S, Ullah F, Ayaz A, Zaman W (2022) Melatonin function and crosstalk with other phytohormones under normal and stressful conditions. Genes 13(10), 1699.
| Crossref | Google Scholar |

Khan M, Ali S, Al Azzawi TNI, Saqib S, Ullah F, Ayaz A, Zaman W (2023) The key roles of ROS and RNS as a signaling molecule in plant–microbe interactions. Antioxidants 12(2), 268.
| Crossref | Google Scholar |

Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K (2022) Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science 27(9), 922-935.
| Crossref | Google Scholar |

Kim Y-W, Youn J-H, Roh J, Kim J-M, Kim S-K, Kim T-W (2022) Brassinosteroids enhance salicylic acid-mediated immune responses by inhibiting BIN2 phosphorylation of clade I TGA transcription factors in Arabidopsis. Molecular Plant 15(6), 991-1007.
| Crossref | Google Scholar |

Knox-Brown P, Rindfleisch T, Günther A, Balow K, Bremer A, Walther D, Miettinen MS, Hincha DK, Thalhammer A (2020) Similar yet different–structural and functional diversity among Arabidopsis thaliana LEA_4 proteins. International Journal of Molecular Sciences 21(8), 2794.
| Crossref | Google Scholar | PubMed |

Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 8(12), 641.
| Crossref | Google Scholar | PubMed |

Kołodziejczyk I, Dzitko K, Szewczyk R, Posmyk MM (2016) Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. Journal of Plant Physiology 193, 47-56.
| Crossref | Google Scholar | PubMed |

Lamalakshmi Devi E, Kumar S, Basanta Singh T, Sharma SK, Beemrote A, Devi CP, Chongtham SK, Singh CH, Yumlembam RA, Haribhushan A, Prakash N, Wani SH (2017) Adaptation strategies and defence mechanisms of plants during environmental stress. In ‘Medicinal plants and environmental challenges’. (Eds M Ghorbanpour, A Varma) pp. 359–413. (Springer International Publishing: Cham, Switzerland)

Langaroudi IK, Piri S, Chaeikar SS, Salehi B (2023) Evaluating drought stress tolerance in different Camellia sinensis L. cultivars and effect of melatonin on strengthening antioxidant system. Scientia Horticulturae 307, 111517.
| Crossref | Google Scholar |

Lee HY, Back K (2018) Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. Journal of Pineal Research 65(3), e12504.
| Crossref | Google Scholar | PubMed |

Lee HY, Back K (2021) 2-hydroxymelatonin, rather than melatonin, is responsible for RBOH-dependent reactive oxygen species production leading to premature senescence in plants. Antioxidants 10(11), 1728.
| Crossref | Google Scholar | PubMed |

Lee HY, Back K (2022) 2-Hydroxymelatonin promotes seed germination by increasing reactive oxygen species production and gibberellin synthesis in Arabidopsis thaliana. Antioxidants 11(4), 737.
| Crossref | Google Scholar | PubMed |

Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. Journal of Pineal Research 57(3), 262-268.
| Crossref | Google Scholar |

Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K (2016) Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). Journal of Pineal Research 61(4), 470-478.
| Crossref | Google Scholar | PubMed |

Lee K, Lee HY, Back K (2018) Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. Journal of Pineal Research 64(2), e12460.
| Crossref | Google Scholar | PubMed |

Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens MELANOCYTES. Journal of the American Chemical Society 80(10), 2587.
| Crossref | Google Scholar |

Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research 53(3), 298-306.
| Crossref | Google Scholar |

Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science 8, 295.
| Crossref | Google Scholar |

Li X, Wei J-P, Scott ER, Liu J-W, Guo S, Li Y, Zhang L, Han W-Y (2018) Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules 23(1), 165.
| Crossref | Google Scholar |

Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019a) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24(9), 1826.
| Crossref | Google Scholar | PubMed |

Li Z-G, Xu Y, Bai L-K, Zhang S-Y, Wang Y (2019b) Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems. Protoplasma 256(2), 471-490.
| Crossref | Google Scholar | PubMed |

Li D, Wei J, Peng Z, Ma W, Yang Q, Song Z, Sun W, Yang W, Yuan L, Xu X, Chang W, Rengel Z, Shen J, Reiter RJ, Cui X, Yu D, Chen Q (2020) Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. Journal of Pineal Research 68(3), e12640.
| Crossref | Google Scholar |

Li H, Guo Y, Lan Z, Zhang Z, Ahammed GJ, Chang J, Zhang Y, Wei C, Zhang X (2021a) Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Science 303, 110761.
| Crossref | Google Scholar |

Li R, Jiang M, Song Y, Zhang H (2021b) Melatonin alleviates low-temperature stress via ABI5-mediated signals during seed germination in rice (Oryza sativa L.). Frontiers in Plant Science 12 727596.
| Crossref | Google Scholar |

Li Y, Liu K, Tong G, Xi C, Liu J, Zhao H, Wang Y, Ren D, Han S (2021c) MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. Journal of Experimental Botany 73(1), 413-428.
| Crossref | Google Scholar |

Li R, Yang R, Zheng W, Wu L, Zhang C, Zhang H (2022a) Melatonin promotes SGT1-involved signals to ameliorate drought stress adaption in rice. International Journal of Molecular Sciences 23(2), 599.
| Crossref | Google Scholar |

Li S, Huan C, Liu Y, Zheng X, Bi Y (2022b) Melatonin induces improved protection against Botrytis cinerea in cherry tomato fruit by activating salicylic acid signaling pathway. Scientia Horticulturae 304, 111299.
| Crossref | Google Scholar |

Li S, Wang Y, Gao X, Lan J, Fu B (2022c) Comparative physiological and transcriptome analysis reveal the molecular mechanism of melatonin in regulating salt tolerance in alfalfa (Medicago sativa L.). Frontiers in Plant Science 13, 919177.
| Crossref | Google Scholar |

Li X, Liang X, Li W, Yao A, Liu W, Wang Y, Yang G, Han D (2022d) Isolation and functional analysis of MbCBF2, a Malus baccata (L.) Borkh CBF transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. International Journal of Molecular Sciences 23(17), 9827.
| Crossref | Google Scholar | PubMed |

Li Z, Zhang S, Xue J, Mu B, Song H, Liu Y (2022e) Exogenous melatonin treatment induces disease resistance against Botrytis cinerea on post-harvest grapes by activating defence responses. Foods 11(15), 2231.
| Crossref | Google Scholar | PubMed |

Liang C, Li A, Yu H, Li W, Liang C, Guo S, Zhang R, Chu C (2017) Melatonin regulates root architecture by modulating auxin response in rice. Frontiers in Plant Science 8, 134.
| Crossref | Google Scholar | PubMed |

Liang X, Luo G, Li W, Yao A, Liu W, Xie L, Han M, Li X, Han D (2022) Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, increases cold and salinity tolerance in Arabidopsis thaliana. Plant Physiology and Biochemistry 192, 230-242.
| Crossref | Google Scholar |

Liu H-c, Charng Y-y (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiology 163(1), 276-290.
| Crossref | Google Scholar |

Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE (2017) Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Plant, Cell & Environment 40(10), 2189-2206.
| Crossref | Google Scholar | PubMed |

Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W, Sheng J, Shen L (2019) Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. Journal of Agricultural and Food Chemistry 67(22), 6116-6124.
| Crossref | Google Scholar |

Liu L, Huang L, Sun C, Wang L, Jin C, Lin X (2021) Cross-talk between hydrogen peroxide and nitric oxide during plant development and responses to stress. Journal of Agricultural and Food Chemistry 69(33), 9485-9497.
| Crossref | Google Scholar |

Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z (2022a) Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. Journal of Experimental Botany 73(17), 5818-5827.
| Crossref | Google Scholar |

Liu W, Chen T, Liu Y, Le QT, Wang R, Lee H, Xiong L (2022b) The Plastidial DIG5 Protein Affects Lateral Root Development by Regulating Flavonoid Biosynthesis and Auxin Transport in Arabidopsis. International Journal of Molecular Sciences 23(18), 10642.
| Crossref | Google Scholar |

Liu Y, Wang X, Lv H, Cao M, Li Y, Yuan X, Zhang X, Guo Y-D, Zhang N (2022c) Anabolism and signaling pathways of phytomelatonin. Journal of Experimental Botany 73(17), 5801-5817.
| Crossref | Google Scholar |

Liu J, Wang J, Zhang T, Li M, Yan H, Liu Q, Wei Y, Ji X, Zhao Q (2023) Exogenous melatonin positively regulates rice root growth through promoting the antioxidant system and mediating the auxin signaling under root-zone hypoxia stress. Agronomy 13(2), 386.
| Crossref | Google Scholar |

Lv Y, Pan J, Wang H, Reiter RJ, Li X, Mou Z, Zhang J, Yao Z, Zhao D, Yu D (2021) Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis. Journal of Pineal Research 70(4), e12736.
| Crossref | Google Scholar |

Ma X, Jin Q, Wang Y, Wang X, Wang X, Yang M, Ye C, Yang Z, Xu Y (2023) Comparative transcriptome analysis reveals the regulatory mechanisms of two tropical water lilies in response to cold stress. BMC Genomics 24(1), 82.
| Crossref | Google Scholar | PubMed |

Malik Z, Afzal S, Dawood M, Abbasi GH, Khan MI, Kamran M, Zhran M, Hayat MT, Aslam MN, Rafay M (2022) Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. Environmental Geochemistry and Health 44(5), 1451-1469.
| Crossref | Google Scholar |

Mannino G, Pernici C, Serio G, Gentile C, Bertea CM (2021) Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals—an overview. International Journal of Molecular Sciences 22(18), 9996.
| Crossref | Google Scholar | PubMed |

Market Data Forecast (2022) Melatonin Market Segmentation By Type (Natural melatonin and Synthetic melatonin); By Application (Dietary supplement, Construction industry, Medical industry, and Others); and Region – Industry Forecast of 2022 to 2027. Available at https://www.marketdataforecast.com/market-reports/melatonin-market [Retrieved 18/03/2023]

Mathur P, Pramanik S (2020) Prospective role of melatonin in signaling and alleviation of stress in plants. In ‘Neurotransmitters in plant signaling and communication’. (Eds F Baluška, S Mukherjee, A Ramakrishna) pp. 213–240. (Springer International Publishing: Cham, Switzerland)

Middleton AM, Dal Bosco C, Chlap P, Bensch R, Harz H, Ren F, Bergmann S, Wend S, Weber W, Hayashi K-i, Zurbriggen MD, Uhl R, Ronneberger O, Palme K, Fleck C, Dovzhenko A (2018) Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Reports 22(11), 3044-3057.
| Crossref | Google Scholar |

Mishra S, Chowdhary AA, Mehrotra S, Srivastava V (2019) Function of plant heat shock transcription factors in abiotic stress. In ‘Molecular approaches in plant biology and environmental challenges’. (Eds SP Singh, SK Upadhyay, A Pandey, S Kumar) pp. 113–126. (Springer: Singapore)

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F (2022) Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23(10), 663-679.
| Crossref | Google Scholar |

Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Frontiers in Plant Science 6, 1230.
| Crossref | Google Scholar |

Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology 220, 115-127.
| Crossref | Google Scholar | PubMed |

Nawaz K, Chaudhary R, Sarwar A, Ahmad B, Gul A, Hano C, Abbasi BH, Anjum S (2021) Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives. Sustainability 13(1), 294.
| Crossref | Google Scholar |

Noman M, Aysha J, Ketehouli T, Yang J, Du L, Wang F, Li H (2021) Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance. Journal of Plant Physiology 256, 153327.
| Crossref | Google Scholar |

Paredes SD, Korkmaz A, Manchester LC, Tan D-X, Reiter RJ (2008) Phytomelatonin: a review. Journal of Experimental Botany 60(1), 57-69.
| Crossref | Google Scholar |

Paredes SD, Rancan L, García C, Vara E, Tresguerres JAF (2016) Occurrence of serotonin, melatonin, and their derivatives in plants. In ‘Serotonin and melatonin: their functional role in plants, food, phytomedicine, and human health’. (Eds GA Ravishankar, A Ramakrishna) pp. 37–52. (CRC Press: Boca Raton, FL, USA)

Praveen B, Sharma P (2019) A review of literature on climate change and its impacts on agriculture productivity. Journal of Public Affairs 19(4), e1960.
| Crossref | Google Scholar |

Pérez-Llamas F, Hernández-Ruiz J, Cuesta A, Zamora S, Arnao MB (2020) Development of a phytomelatonin-rich extract from cultured plants with excellent biochemical and functional properties as an alternative to synthetic melatonin. Antioxidants 9(2), 158.
| Crossref | Google Scholar | PubMed |

Pérez-Llorca M, Muñoz P, Müller M, Munné-Bosch S (2019) Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Frontiers in Plant Science 10, 136.
| Crossref | Google Scholar |

Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M (2022) Melatonin induced cold tolerance in plants: physiological and molecular responses. Frontiers in Plant Science 13, 843071.
| Crossref | Google Scholar | PubMed |

Qu G, Wu W, Ba L, Ma C, Ji N, Cao S (2022) Melatonin enhances the postharvest disease resistance of blueberries fruit by modulating the jasmonic acid signaling pathway and phenylpropanoid metabolites. Front Chem 10, 957581.
| Crossref | Google Scholar | PubMed |

Reiter RJ, Tan D-x, Manchester LC, Simopoulos AP, Maldonado MD, Flores LJ, Terron MP (2007) Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions. World Review of Nutrition and Dietetics 97, 211-230.
| Crossref | Google Scholar | PubMed |

Ren S, Rutto L, Katuuramu D (2019) Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE 14(8), e0221687.
| Crossref | Google Scholar | PubMed |

Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9(5), 560.
| Crossref | Google Scholar |

Roy M, Niu J, Irshad A, Kareem HA, Hassan MU, Xu N, Sui X, Guo Z, Amo A, Wang Q (2021) Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress 2, 100044.
| Crossref | Google Scholar |

Sagan L (1967) On the origin of mitosing cells. Journal of Theoretical Biology 14(3), 225-274 IN1–IN6.
| Crossref | Google Scholar |

Sajjad N, Bhat EA, Hassan S, Ali R, Shah D (2020) Role of melatonin in amelioration of abiotic stress-induced damages. In ‘Protective chemical agents in the amelioration of plant abiotic stress’. (Eds A Roychoudhury, DK Tripathi) pp. 306–317. (Wiley Online Library: USA)

Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge Ld, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M (2019) Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells 8(7), 681.
| Crossref | Google Scholar | PubMed |

Sati H, Khandelwal A, Pareek S (2023) Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. Food Frontiers 4(1), 233–261. 10.1002/fft2.180

Serag A, Salem MA, Gong S, Wu J-L, Farag MA (2023) Decoding metabolic reprogramming in plants under pathogen attacks, a comprehensive review of emerging metabolomics technologies to maximize their applications. Metabolites 13(3), 424.
| Crossref | Google Scholar | PubMed |

Sham A, Moustafa K, Al-Shamisi S, Alyan S, Iratni R, AbuQamar S (2017) Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea. PLoS ONE 12(2), e0172343.
| Crossref | Google Scholar |

Shamloo-Dashtpagerdi R, Aliakbari M, Lindlöf A, Tahmasebi S (2022) A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Planta 255(5), 99.
| Crossref | Google Scholar |

Sharma A, Zheng B (2019) Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins. Biomolecules 9(9), 397.
| Crossref | Google Scholar |

Sharma P, Bakshi P, Kaur R, Sharma A, Bhardwaj R, El-Sheikh MA, Tyagi A, Ahmad P (2023) Inoculation of plant-growth-promoting rhizobacteria and earthworms in the rhizosphere reinstates photosynthetic attributes and secondary metabolites in Brassica juncea L. under chromium toxicity. Plant and Soil 483(1), 573-587.
| Crossref | Google Scholar |

Shi H, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. Journal of Pineal Research 57(2), 185-191.
| Crossref | Google Scholar | PubMed |

Shi H, Tan D-X, Reiter RJ, Ye T, Yang F, Chan Z (2015) Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research 58(3), 335-342.
| Crossref | Google Scholar |

Song R, Ritonga FN, Yu H, Ding C, Zhao X (2022) Plant melatonin: regulatory and protective role. Horticulturae 8(9), 810.
| Crossref | Google Scholar |

Su J, Yang X, Shao Y, Chen Z, Shen W (2021) Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. Plant, Cell & Environment 44(2), 476-490.
| Crossref | Google Scholar |

Sun Y, Liu Z, Lan G, Jiao C, Sun Y (2019) Effect ofexogenous melatonin on resistance of cucumber to downy mildew. Scientia Horticulturae 255, 231-241.
| Crossref | Google Scholar |

Sun C, Liu L, Wang L, Li B, Jin C, Lin X (2021) Melatonin: a master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63(1), 126-145.
| Crossref | Google Scholar | PubMed |

Talaat NB (2019) Role of reactive oxygen species signaling in plant growth and development. In ‘Reactive oxygen, nitrogen and sulfur species in plants’. (Eds M Hasanuzzaman, V Fotopoulos, K Nahar, M Fujita) pp. 225–266. (Wiley Online Library: USA)

Tan J, Zhou Z, Feng H, Xing J, Niu Y, Deng Z (2021) Data-independent acquisition-based proteome and phosphoproteome profiling reveals early protein phosphorylation and dephosphorylation events in arabidopsis seedlings upon cold exposure. International Journal of Molecular Sciences 22(23), 12856.
| Crossref | Google Scholar |

Tanveer M, Mahmood A, Sarfraz B, Zia MA, Javaid MM, Bibi S, Naqve M, Nadeem MA, Azeem M, Jabbar A (2023) Mechanism and approaches to enhancing heat stress tolerance in crop plants. In ‘Climate-resilient agriculture: agro-biotechnological advancement for crop production’. (Ed. M Hasanuzzaman) pp. 499–520. (Springer International Publishing: Cham, Switzerland)

Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in Plant Science 5, 293.
| Crossref | Google Scholar | PubMed |

Teng Z, Zheng W, Yu Y, Hong S-B, Zhu Z, Zang Y (2022) Melatonin regulated glucosinolate profile via modulation of genes related with sulfur and nitrogen metabolism in Brassica rapa ssp. pekinensis. Industrial Crops and Products 177, 114538.
| Crossref | Google Scholar |

Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. Journal of Pineal Research 52(3), 332-339.
| Crossref | Google Scholar |

Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiologia Plantarum 172(2), 1212-1226.
| Crossref | Google Scholar | PubMed |

Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2022) Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Molecular Biology 109(4), 385-399.
| Crossref | Google Scholar | PubMed |

Umapathi M, Kalarani MK, Srinivasan S, Kalaiselvi P (2022) Alleviation of cadmium phytotoxicity through melatonin modulated physiological functions, antioxidants, and metabolites in tomato (Solanum lycopersicum L.). BioMetals 35(5), 1113-1132.
| Crossref | Google Scholar | PubMed |

Uzal O, Baslak L, Yasar F (2023) Effects of external melatonin treatments on morphological and physiological changes in cucumber (Cucumis sativus L.) seedlings against chilling stress. Gesunde Pflanzen 75(1), 115-125.
| Crossref | Google Scholar |

Vasina M, Velecký J, Planas-Iglesias J, Marques SM, Skarupova J, Damborsky J, Bednar D, Mazurenko S, Prokop Z (2022) Tools for computational design and high-throughput screening of therapeutic enzymes. Advanced Drug Delivery Reviews 183, 114143.
| Crossref | Google Scholar |

Včelařová L, Skalický V, Chamrád I, Lenobel R, Kubeš MF, Pěnčík A, Novák O (2021) Auxin metabolome profiling in the Arabidopsis endoplasmic reticulum using an optimised organelle isolation protocol. International Journal of Molecular Sciences 22(17), 9370.
| Crossref | Google Scholar | PubMed |

Wang Q, An B, Wei Y, Reiter RJ, Shi H, Luo H, He C (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Frontiers in Plant Science 7, 1882.
| Crossref | Google Scholar | PubMed |

Wang L, Leister D, Guan L, Zheng Y, Schneider K, Lehmann M, Apel K, Kleine T (2020) The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proceedings of the National Academy of Sciences 117(12), 6918-6927.
| Crossref | Google Scholar | PubMed |

Wang K, He J, Gao Y, Han K, Liu J, Wang Y (2022a) Exogenous melatonin improved the growth and development of naked oat seedlings under cadmium stress. Environmental Science and Pollution Research 29(58), 88109-88118.
| Crossref | Google Scholar | PubMed |

Wang K, He J, Zhao N, Zhao Y, Qi F, Fan F, Wang Y (2022b) Effects of melatonin on growth and antioxidant capacity of naked oat (Avena nuda L) seedlings under lead stress. PeerJ 10, e13978.
| Crossref | Google Scholar |

Wang K, Xing Q, Ahammed GJ, Zhou J (2022c) Functions and prospects of melatonin in plant growth, yield, and quality. Journal of Experimental Botany 73(17), 5928-5946.
| Crossref | Google Scholar | PubMed |

Wang X, Meng H, Tang Y, Zhang Y, He Y, Zhou J, Meng X (2022d) Phosphorylation of an ethylene response factor by MPK3/MPK6 mediates negative feedback regulation of pathogen-induced ethylene biosynthesis in Arabidopsis. Journal of Genetics and Genomics 49(8), 810-822.
| Crossref | Google Scholar | PubMed |

Wang Z, Mu Y, Zhang L, Liu Z, Liu D, Jin Z, Pei Y (2023) Hydrogen sulfide mediated the melatonin induced stoma closure by regulating the K+ channel in Arabidopsis thaliana. Environmental and Experimental Botany 205, 105125.
| Crossref | Google Scholar |

Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. The Plant Cell 18(7), 1617-1629.
| Crossref | Google Scholar |

Wei Y, Hu W, Wang Q, Zeng H, Li X, Yan Y, Reiter RJ, He C, Shi H (2017) Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. Journal of Pineal Research 62(1), e12367.
| Crossref | Google Scholar | PubMed |

Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science 7, 718.
| Crossref | Google Scholar | PubMed |

Wichniak A, Kania A, Siemiński M, Cubała WJ (2021) Melatonin as a potential adjuvant treatment for COVID-19 beyond sleep disorders. International Journal of Molecular Sciences 22(16), 8623.
| Crossref | Google Scholar | PubMed |

Wu X, Ren J, Huang X, Zheng X, Tian Y, Shi L, Dong P, Li Z (2021) Melatonin: biosynthesis, content, and function in horticultural plants and potential application. Scientia Horticulturae 288, 110392.
| Crossref | Google Scholar |

Xia H, Zhou Y, Deng H, Lin L, Deng Q, Wang J, Lv X, Zhang X, Liang D (2021) Melatonin improves heat tolerance in Actinidia deliciosa via carotenoid biosynthesis and heat shock proteins expression. Physiologia Plantarum 172(3), 1582-1593.
| Crossref | Google Scholar | PubMed |

Xiao S, Liu L, Wang H, Li D, Bai Z, Zhang Y, Sun H, Zhang K, Li C (2019) Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS ONE 14(6), e0216575.
| Crossref | Google Scholar |

Xie M, Sun J, Gong D, Kong Y (2019) The roles of Arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes 10(9), 653.
| Crossref | Google Scholar | PubMed |

Xie W, Li X, Wang S, Yuan M (2022a) OsWRKY53 promotes abscisic acid accumulation to accelerate leaf senescence and inhibit seed germination by downregulating abscisic acid catabolic genes in rice. Frontiers in Plant Science 12, 816156.
| Crossref | Google Scholar | PubMed |

Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D (2022b) Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synthetic and Systems Biotechnology 7(1), 544-553.
| Crossref | Google Scholar | PubMed |

Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q (2019) Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant and Cell Physiology 60(9), 2051-2064.
| Crossref | Google Scholar | PubMed |

Yan Y, Shi Q, Gong B (2020) Review of melatonin in horticultural crops. In ‘Melatonin – the hormone of darkness and its therapeutic potential and perspectives’. (Ed. M Vlachou) pp. 1–23. (IntechOpen: London, UK)

Yang Y-X, Ahammed GJ, Wu C, Fan S-y, Zhou Y-H (2015) Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein and Peptide Science 16(5), 450-461.
| Crossref | Google Scholar | PubMed |

Yang R, Yu G, Li H, Li X, Mu C (2020) Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis hsp17.6II mutant enhances tolerance to abiotic stresses. Russian Journal of Plant Physiology 67(2), 231-241.
| Crossref | Google Scholar |

Yang C, Li Z, Cao X, Duan W, Wei C, Zhang C, Jiang D, Li M, Chen K, Qiao Y, Liu H, Zhang B (2022a) Genome-wide analysis of Calmodulin Binding Transcription Activator (CAMTA) gene family in Peach (Prunus persica L. Batsch) and ectopic expression of PpCAMTA1 in Arabidopsis camta2,3 mutant restore plant development. International Journal of Molecular Sciences 23(18), 10500.
| Crossref | Google Scholar | PubMed |

Yang L, Bu S, Zhao S, Wang N, Xiao J, He F, Gao X (2022b) Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato. PLoS ONE 17(5), e0267594.
| Crossref | Google Scholar |

Ye T, Yin X, Yu L, Zheng SJ, Cai WJ, Wu Y, Feng YQ (2019) Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. Journal of Pineal Research 66(1), e12531.
| Crossref | Google Scholar | PubMed |

Yuan Q, Zhao L (2017) The Mulberry (Morus alba L.) Fruit—a review of characteristic components and health benefits. Journal of Agricultural and Food Chemistry 65(48), 10383-10394.
| Crossref | Google Scholar |

Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H (2022) Phytomelatonin as a central molecule in plant disease resistance. Journal of Experimental Botany 73(17), 5874-5885.
| Crossref | Google Scholar | PubMed |

Zhang N, Zhao B, Zhang H-J, Weeda S, Yang C, Yang Z-C, Ren S, Guo Y-D (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research 54(1), 15-23.
| Crossref | Google Scholar | PubMed |

Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017a) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany 138, 36-45.
| Crossref | Google Scholar |

Zhang N, Zhang H-J, Sun Q-Q, Cao Y-Y, Li X, Zhao B, Wu P, Guo Y-D (2017b) Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Scientific Reports 7(1), 503.
| Crossref | Google Scholar |

Zhang R, Sun Y, Liu Z, Jin W, Sun Y (2017c) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. Journal of Pineal Research 62(4), e12403.
| Crossref | Google Scholar | PubMed |

Zhang S, Zheng X, Reiter RJ, Feng S, Wang Y, Liu S, Jin L, Li Z, Datla R, Ren M (2017d) Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Frontiers in Plant Science 8, 1993.
| Crossref | Google Scholar | PubMed |

Zhang H, Liu X, Chen T, Ji Y, Shi K, Wang L, Zheng X, Kong J (2018) Melatonin in apples and juice: inhibition of browning and microorganism growth in apple juice. Molecules 23(3), 521.
| Crossref | Google Scholar | PubMed |

Zhang X, Ménard R, Li Y, Coruzzi GM, Heitz T, Shen W-H, Berr A (2020) Arabidopsis SDG8 potentiates the sustainable transcriptional induction of the pathogenesis-related genes PR1 and PR2 during plant defense response. Frontiers in Plant Science 11, 277.
| Crossref | Google Scholar |

Zhang H, Liu L, Wang Z, Feng G, Gao Q, Li X (2021) Induction of low temperature tolerance in wheat by pre-soaking and parental treatment with melatonin. Molecules 26(4), 1192.
| Crossref | Google Scholar | PubMed |

Zhang M, Gao C, Xu L, Niu H, Liu Q, Huang Y, Lv G, Yang H, Li M (2022a) Melatonin and indole-3-acetic acid synergistically regulate plant growth and stress resistance. Cells 11(20), 3250.
| Crossref | Google Scholar |

Zhang X, Liu W, Lv Y, Bai J, Li T, Yang X, Liu L, Zhou H (2022b) Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. PeerJ 10, e13669.
| Crossref | Google Scholar | PubMed |

Zhang Z, Yuan L, Ma Y, Kang Z, Zhou F, Gao Y, Yang S, Li T, Hu X (2022c) Exogenous 5-aminolevulinic acid alleviates low-temperature damage by modulating the xanthophyll cycle and nutrient uptake in tomato seedlings. Plant Physiology and Biochemistry 189, 83-93.
| Crossref | Google Scholar | PubMed |

Zhang Y, Berman A, Shani E (2023) Plant hormone transport and localization: signaling molecules on the move. Annual Review of Plant Biology 74(1), 453-479.
| Crossref | Google Scholar | PubMed |

Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F (2015) Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. Journal of Pineal Research 59(1), 109-119.
| Crossref | Google Scholar | PubMed |

Zhao C, Yang M, Wu X, Wang Y, Zhang R (2021a) Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry 168, 128-142.
| Crossref | Google Scholar | PubMed |

Zhao D, Wang H, Chen S, Yu D, Reiter RJ (2021b) Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends in Plant Science 26(1), 70-82.
| Crossref | Google Scholar | PubMed |

Zhu Y, Guo M-J, Song J-B, Zhang S-Y, Guo R, Hou D-R, Hao C-Y, An H-L, Huang X (2021) Roles of Endogenous Melatonin in Resistance to Botrytis cinerea Infection in an Arabidopsis Model [Original Research]. Frontiers in Plant Science 12, 683228.
| Crossref | Google Scholar | PubMed |

Zia SF, Berkowitz O, Bedon F, Whelan J, Franks AE, Plummer KM (2019) Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biology 19(1), 567.
| Crossref | Google Scholar | PubMed |