Small RNA (sRNA) expression in the chorioallantois, endometrium and serum of mares following experimental induction of placentitis
Shavahn C. Loux A , Claudia B. Fernandes B , Pouya Dini A , Kai Wang C , Xiaogang Wu C , David Baxter C , Kirsten E. Scoggin A , Mats H. T. Troedsson A , Edward L. Squires A and Barry A. Ball A DA Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA.
B Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil.
C Institute for Systems Biology, Seattle, WA 98109, USA.
D Corresponding author. Email: b.a.ball@uky.edu
Reproduction, Fertility and Development 31(6) 1144-1156 https://doi.org/10.1071/RD18400
Submitted: 4 October 2018 Accepted: 30 January 2019 Published: 5 April 2019
Abstract
Intrauterine infection and inflammation remain a major cause of preterm labour in women and mares, with little known about small RNA (sRNA) expression in tissue or circulation. To better characterise placental inflammation (placentitis), we examined sRNA expression in the endometrium, chorioallantois and serum of mares with and without placentitis. Disease was induced in 10 mares via intracervical inoculation of Streptococcus equi ssp. zooepidemicus, either with moderate or high levels of inoculum; three uninoculated gestationally matched mares were used as controls. Matched chorioallantois and endometrium were sampled in two locations: Region 1, gross inflammation near cervical star with placental separation and Region 2, gross inflammation without placental separation. In Region 1, 26 sRNAs were altered in chorioallantois, while 20 were altered in endometrium. Within Region 2, changes were more subdued in both chorioallantois (10 sRNAs) and endometrium (two sRNAs). Within serum, we identified nine significantly altered sRNAs. In summary, we have characterised the expression of sRNA in the chorioallantois, the endometrium and the serum of mares with experimentally induced placentitis using next-generation sequencing, identifying significant changes within each tissue examined. These data should provide valuable information about the physiology of placental inflammation to clinicians and researchers alike.
Additional keywords: infection, inflammation, microRNA, placenta, pregnancy.
References
Ackerman, W. E. t., Buhimschi, I. A., Eidem, H. R., Rinker, D. C., Rokas, A., Rood, K., Zhao, G., Summerfield, T. L., Landon, M. B., and Buhimschi, C. S. (2016). Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection. Placenta 44, 23–33.| Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection.Crossref | GoogleScholarGoogle Scholar |
Andaloussi, S. E. L., Mäger, I., Breakefield, X. O., and Wood, M. J. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357.
| Extracellular vesicles: biology and emerging therapeutic opportunities.Crossref | GoogleScholarGoogle Scholar |
Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 108, 5003–5008.
| Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma.Crossref | GoogleScholarGoogle Scholar | 21383194PubMed |
Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature 455, 64–71.
| The impact of microRNAs on protein output.Crossref | GoogleScholarGoogle Scholar | 18668037PubMed |
Baumjohann, D. (2018). Diverse functions of miR-17-92 cluster microRNAs in T helper cells. Cancer Lett. 423, 147–152.
| Diverse functions of miR-17-92 cluster microRNAs in T helper cells.Crossref | GoogleScholarGoogle Scholar | 29499238PubMed |
Burton, G. J., and Jauniaux, E. (2018). Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 218, S745–S761.
| Pathophysiology of placental-derived fetal growth restriction.Crossref | GoogleScholarGoogle Scholar | 29422210PubMed |
Canisso, I. F., Ball, B. A., Cray, C., Williams, N. M., Scoggin, K. E., Davolli, G. M., Squires, E. L., and Troedsson, M. H. (2014). Serum amyloid A and haptoglobin concentrations are increased in plasma of mares with ascending placentitis in the absence of changes in peripheral leukocyte counts or fibrinogen concentration. Am. J. Reprod. Immunol. 72, 376–385.
| Serum amyloid A and haptoglobin concentrations are increased in plasma of mares with ascending placentitis in the absence of changes in peripheral leukocyte counts or fibrinogen concentration.Crossref | GoogleScholarGoogle Scholar | 24916762PubMed |
Canisso, I. F., Ball, B. A., Squires, E. L., and Troedsson, M. H. (2015). Comprehensive review on equine placentitis. Proc. Am. Assoc. Equine Pract. 61, 490–509.
Chavatte-Palmer, P., and Tarrade, A. (2016). Placentation in different mammalian species. Ann. Endocrinol. (Paris) 77, 67–74.
| Placentation in different mammalian species.Crossref | GoogleScholarGoogle Scholar | 27155775PubMed |
Cheng, N. L., Chen, X., Kim, J., Shi, A. H., Nguyen, C., Wersto, R., and Weng, N. P. (2015). MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell 14, 200–208.
| MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age.Crossref | GoogleScholarGoogle Scholar | 25620312PubMed |
Conley, A. J. (2016). Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology 86, 355–365.
| Review of the reproductive endocrinology of the pregnant and parturient mare.Crossref | GoogleScholarGoogle Scholar | 27156685PubMed |
Delorme-Axford, E., Donker, R. B., Mouillet, J. F., Chu, T., Bayer, A., Ouyang, Y., Wang, T., Stolz, D. B., Sarkar, S. N., Morelli, A. E., Sadovsky, Y., and Coyne, C. B. (2013). Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl. Acad. Sci. USA 110, 12048–12053.
| Human placental trophoblasts confer viral resistance to recipient cells.Crossref | GoogleScholarGoogle Scholar | 23818581PubMed |
Dini, P., Loux, S. C., Scoggin, K. E., Esteller-Vico, A., Squires, E. L., Troedsson, M. H. T., Daels, P., and Ball, B. A. (2018). Identification of reference genes for analysis of microRNA expression patterns in equine chorioallantoic membrane and serum. Mol. Biotechnol. 60, 62–73.
| Identification of reference genes for analysis of microRNA expression patterns in equine chorioallantoic membrane and serum.Crossref | GoogleScholarGoogle Scholar | 29197992PubMed |
Dulay, A. T., Buhimschi, I. A., Zhao, G., Bahtiyar, M. O., Thung, S. F., Cackovic, M., and Buhimschi, C. S. (2015). Compartmentalization of acute phase reactants interleukin-6, C-reactive protein and procalcitonin as biomarkers of intra-amniotic infection and chorioamnionitis. Cytokine 76, 236–243.
| Compartmentalization of acute phase reactants interleukin-6, C-reactive protein and procalcitonin as biomarkers of intra-amniotic infection and chorioamnionitis.Crossref | GoogleScholarGoogle Scholar | 25957466PubMed |
Dumont, T. M. F., Mouillet, J. F., Bayer, A., Gardner, C. L., Klimstra, W. B., Wolf, D. G., Yagel, S., Balmir, F., Binstock, A., Sanfilippo, J. S., Coyne, C. B., Larkin, J. C., and Sadovsky, Y. (2017). The expression level of C19MC miRNAs in early pregnancy and in response to viral infection. Placenta 53, 23–29.
| The expression level of C19MC miRNAs in early pregnancy and in response to viral infection.Crossref | GoogleScholarGoogle Scholar |
Duroux-Richard, I., Roubert, C., Ammari, M., Presumey, J., Grun, J. R., Haupl, T., Grutzkau, A., Lecellier, C. H., Boitez, V., Codogno, P., Escoubet, J., Pers, Y. M., Jorgensen, C., and Apparailly, F. (2016). miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 128, 3125–3136.
| 27702798PubMed |
Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.
| Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.Crossref | GoogleScholarGoogle Scholar | 11752295PubMed |
El-Shazly, S., Makhseed, M., Azizieh, F., and Raghupathy, R. (2004). Increased expression of pro-inflammatory cytokines in placentas of women undergoing spontaneous preterm delivery or premature rupture of membranes. Am. J. Reprod. Immunol. 52, 45–52.
| Increased expression of pro-inflammatory cytokines in placentas of women undergoing spontaneous preterm delivery or premature rupture of membranes.Crossref | GoogleScholarGoogle Scholar | 15214942PubMed |
Elliot, M. G., and Crespi, B. J. (2009). Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta 30, 949–967.
| Phylogenetic evidence for early hemochorial placentation in eutheria.Crossref | GoogleScholarGoogle Scholar | 19800685PubMed |
Elovitz, M. A., and Mrinalini, C. (2004). Animal models of preterm birth. Trends Endocrinol. Metab. 15, 479–487.
| Animal models of preterm birth.Crossref | GoogleScholarGoogle Scholar | 15541647PubMed |
Essandoh, K., Li, Y., Huo, J., and Fan, G. C. (2016). MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 46, 122–131.
| MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response.Crossref | GoogleScholarGoogle Scholar | 26954942PubMed |
Etheridge, A., Wang, K., Baxter, D., and Galas, D. (2018). Preparation of small RNA NGS libraries from biofluids. Methods Mol. Biol. 1740, 163–175.
| Preparation of small RNA NGS libraries from biofluids.Crossref | GoogleScholarGoogle Scholar | 29388143PubMed |
Fishman, S. G., and Gelber, S. E. (2012). Evidence for the clinical management of chorioamnionitis. Semin. Fetal Neonatal Med. 17, 46–50.
| Evidence for the clinical management of chorioamnionitis.Crossref | GoogleScholarGoogle Scholar | 21962477PubMed |
Gantier, M. P., McCoy, C. E., Rusinova, I., Saulep, D., Wang, D., Xu, D., Irving, A. T., Behlke, M. A., Hertzog, P. J., Mackay, F., and Williams, B. R. (2011). Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 39, 5692–5703.
| Analysis of microRNA turnover in mammalian cells following Dicer1 ablation.Crossref | GoogleScholarGoogle Scholar | 21447562PubMed |
Garg, M., Potter, J. A., and Abrahams, V. M. (2013). Identification of microRNAs that regulate TLR2-mediated trophoblast apoptosis and inhibition of IL-6 mRNA. PLoS One 8, e77249.
| Identification of microRNAs that regulate TLR2-mediated trophoblast apoptosis and inhibition of IL-6 mRNA.Crossref | GoogleScholarGoogle Scholar | 24349057PubMed |
Giles, R. C., Donahue, J. M., Hong, C. B., Tuttle, P. A., Petrites-Murphy, M. B., Poonacha, K. B., Roberts, A. W., Tramontin, R. R., Smith, B., and Swerczek, T. W. (1993). Causes of abortion, stillbirth, and perinatal death in horses: 3,527 cases (1986–1991). J. Am. Vet. Med. Assoc. 203, 1170–1175.
| 8244867PubMed |
Ginther, O. J. (1992). ‘Reproductive Biology of the Mare: Basic and Applied Aspects’. 2nd edn. (Equiservices: Cross Plains, WI, USA.)
Hong, C. B., Donahue, J. M., Giles, R. C., Petrites-Murphy, M. B., Poonacha, K. B., Roberts, A. W., Smith, B. J., Tramontin, R. R., Tuttle, P. A., and Swerczek, T. W. (1993). Etiology and pathology of equine placentitis. J. Vet. Diagn. Invest. 5, 56–63.
| Etiology and pathology of equine placentitis.Crossref | GoogleScholarGoogle Scholar | 8466982PubMed |
Islam, W., Qasim, M., Noman, A., Adnan, M., Tayyab, M., Farooq, T. H., Wei, H., and Wang, L. (2018). Plant microRNAs: front line players against invading pathogens. Microb. Pathog. 118, 9–17.
| Plant microRNAs: front line players against invading pathogens.Crossref | GoogleScholarGoogle Scholar | 29524548PubMed |
Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., and Lu, Z. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35, W339–W344.
| MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features.Crossref | GoogleScholarGoogle Scholar | 17553836PubMed |
Kacerovsky, M., Musilova, I., Jacobsson, B., Drahosova, M., Hornychova, H., Janku, P., Prochazka, M., Simetka, O., and Andrys, C. (2015a). Cervical fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 28, 134–140.
| Cervical fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor rupture of membranes.Crossref | GoogleScholarGoogle Scholar | 24670234PubMed |
Kacerovsky, M., Musilova, I., Jacobsson, B., Drahosova, M., Hornychova, H., Janku, P., Prochazka, M., Simetka, O., and Andrys, C. (2015b). Vaginal fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor membrane ruptures. J. Matern. Fetal Neonatal Med. 28, 392–398.
| Vaginal fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor membrane ruptures.Crossref | GoogleScholarGoogle Scholar | 24754733PubMed |
Kang, S.-T., Hsieh, Y.-S., Feng, C.-T., Chen, Y.-T., Yang, P. E., and Chen, W.-M. (2018). miPrimer: an empirical-based qPCR primer design method for small noncoding microRNA. RNA 24, 304–312.
| miPrimer: an empirical-based qPCR primer design method for small noncoding microRNA.Crossref | GoogleScholarGoogle Scholar | 29208706PubMed |
Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73.
| miRBase: annotating high confidence microRNAs using deep sequencing data.Crossref | GoogleScholarGoogle Scholar | 24275495PubMed |
Kumar, P., Luo, Y., Tudela, C., Alexander, J. M., and Mendelson, C. R. (2013). The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol. Cell. Biol. 33, 1782–1796.
| The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation.Crossref | GoogleScholarGoogle Scholar | 23438603PubMed |
Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.
| Fast gapped-read alignment with Bowtie 2.Crossref | GoogleScholarGoogle Scholar | 22388286PubMed |
Laugier, C., Foucher, N., Sevin, C., Leon, A., and Tapprest, J. A. (2011). A 24-year retrospective study of equine abortion in Normandy (France). J. Equine Vet. Sci. 31, 116–123.
| A 24-year retrospective study of equine abortion in Normandy (France).Crossref | GoogleScholarGoogle Scholar |
LeBlanc, M., Giguere, S., Brauer, K., Paccamonti, D., Horohov, D., Lester, G., O’Donnell, L., Sheerin, B., Pablo, L., and Rodgerson, D. (2002). Premature delivery in ascending placentitis is associated with increased expression of placental cytokines and allantoic fluid prostaglandins E2 and F2α. Theriogenology 58, 841–844.
LeBlanc, M. M., Giguère, S., Lester, G. D., Brauer, K., and Paccamonti, D. L. (2012). Relationship between infection, inflammation and premature parturition in mares with experimentally induced placentitis. Equine Vet. J. Suppl. , 8–14.
| Relationship between infection, inflammation and premature parturition in mares with experimentally induced placentitis.Crossref | GoogleScholarGoogle Scholar | 22594019PubMed |
Liu, B., Li, J., and Cairns, M. J. (2014). Identifying miRNAs, targets and functions. Brief. Bioinform. 15, 1–19.
| Identifying miRNAs, targets and functions.Crossref | GoogleScholarGoogle Scholar | 23175680PubMed |
Loux, S. C., and Ball, B. A. (2018). The proteome of fetal fluids in mares with experimentally-induced placentitis. Placenta 64, 71–78.
| The proteome of fetal fluids in mares with experimentally-induced placentitis.Crossref | GoogleScholarGoogle Scholar | 29626984PubMed |
Loux, S. C., Scoggin, K. E., Bruemmer, J. E., Canisso, I. F., Troedsson, M. H., Squires, E. L., and Ball, B. A. (2017). Evaluation of circulating miRNAs during late pregnancy in the mare. PLoS One 12, e0175045.
| Evaluation of circulating miRNAs during late pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar | 28388652PubMed |
Luo, S. S., Ishibashi, O., Ishikawa, G., Ishikawa, T., Katayama, A., Mishima, T., Takizawa, T., Shigihara, T., Goto, T., Izumi, A., Ohkuchi, A., Matsubara, S., Takeshita, T., and Takizawa, T. (2009). Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 81, 717–729.
| Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes.Crossref | GoogleScholarGoogle Scholar | 19494253PubMed |
Lyle, S. K. (2014). Immunology of infective preterm delivery in the mare. Equine Vet. J. 46, 661–668.
| Immunology of infective preterm delivery in the mare.Crossref | GoogleScholarGoogle Scholar | 24552615PubMed |
Menon, R., and Papaconstantinou, J. (2016). p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin. Ther. Targets 20, 1397–1412.
| p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 27459026PubMed |
Mitchell, M. D., Peiris, H. N., Kobayashi, M., Koh, Y. Q., Duncombe, G., Illanes, S. E., Rice, G. E., and Salomon, C. (2015). Placental exosomes in normal and complicated pregnancy. Am. J. Obstet. Gynecol. 213, S173–S181.
| Placental exosomes in normal and complicated pregnancy.Crossref | GoogleScholarGoogle Scholar | 26428497PubMed |
Montenegro, D., Romero, R., Pineles, B. L., Tarca, A. L., Kim, Y. M., Draghici, S., Kusanovic, J. P., Kim, J. S., Erez, O., Mazaki-Tovi, S., Hassan, S., Espinoza, J., and Kim, C. J. (2007). Differential expression of microRNAs with progression of gestation and inflammation in the human chorioamniotic membranes. Am. J. Obstet. Gynecol. 197, 289.e1–289.e6.
| Differential expression of microRNAs with progression of gestation and inflammation in the human chorioamniotic membranes.Crossref | GoogleScholarGoogle Scholar |
Morales-Prieto, D. M., Ospina-Prieto, S., Chaiwangyen, W., Schoenleben, M., and Markert, U. R. (2013). Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 97, 51–61.
| Pregnancy-associated miRNA-clusters.Crossref | GoogleScholarGoogle Scholar | 23432872PubMed |
Moro, L., Bardaji, A., Macete, E., Barrios, D., Morales-Prieto, D. M., Espana, C., Mandomando, I., Sigauque, B., Dobano, C., Markert, U. R., Benitez-Ribas, D., Alonso, P. L., Menendez, C., and Mayor, A. (2016). Placental microparticles and microRNAs in pregnant women with Plasmodium falciparum or HIV infection. PLoS One 11, e0146361.
| Placental microparticles and microRNAs in pregnant women with Plasmodium falciparum or HIV infection.Crossref | GoogleScholarGoogle Scholar | 27732616PubMed |
Morris, S., Kelleman, A. A., Stawicki, R. J., Hansen, P. J., Sheerin, P. C., Sheerin, B. R., Paccamonti, D. L., and LeBlanc, M. M. (2007). Transrectal ultrasonography and plasma progestin profiles identifies feto–placental compromise in mares with experimentally induced placentitis. Theriogenology 67, 681–691.
| Transrectal ultrasonography and plasma progestin profiles identifies feto–placental compromise in mares with experimentally induced placentitis.Crossref | GoogleScholarGoogle Scholar | 17126392PubMed |
Mouillet, J. F., Ouyang, Y., Bayer, A., Coyne, C. B., and Sadovsky, Y. (2014). The role of trophoblastic microRNAs in placental viral infection. Int. J. Dev. Biol. 58, 281–289.
| The role of trophoblastic microRNAs in placental viral infection.Crossref | GoogleScholarGoogle Scholar | 25023694PubMed |
Norwitz, E. R., Robinson, J. N., and Challis, J. R. (1999). The control of labor. N. Engl. J. Med. 341, 660–666.
| The control of labor.Crossref | GoogleScholarGoogle Scholar | 10460818PubMed |
Oliveros, J. (2007–2015). ‘Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams’. Available at http://bioinfogp.cnb.csic.es/tools/venny/index.html
Ousey, J. C., Houghton, E., Grainger, L., Rossdale, P. D., and Fowden, A. L. (2005). Progestagen profiles during the last trimester of gestation in Thoroughbred mares with normal or compromised pregnancies. Theriogenology 63, 1844–1856.
| Progestagen profiles during the last trimester of gestation in Thoroughbred mares with normal or compromised pregnancies.Crossref | GoogleScholarGoogle Scholar | 15823343PubMed |
Ouyang, Y., Bayer, A., Chu, T., Tyurin, V. A., Kagan, V. E., Morelli, A. E., Coyne, C. B., and Sadovsky, Y. (2016). Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta 47, 86–95.
| Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity.Crossref | GoogleScholarGoogle Scholar | 27780544PubMed |
Pacholewska, A., Mach, N., Mata, X., Vaiman, A., Schibler, L., Barrey, E., and Gerber, V. (2016). Novel equine tissue miRNAs and breed-related miRNA expressed in serum. BMC Genomics 17, 831.
| Novel equine tissue miRNAs and breed-related miRNA expressed in serum.Crossref | GoogleScholarGoogle Scholar | 27782799PubMed |
Randis, T. M., Polin, R. A., and Saade, G. (2017). Chorioamnionitis: time for a new approach. Curr. Opin. Pediatr. 29, 159–164.
| Chorioamnionitis: time for a new approach.Crossref | GoogleScholarGoogle Scholar | 28134708PubMed |
Raposo, G., and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.
| Extracellular vesicles: exosomes, microvesicles, and friends.Crossref | GoogleScholarGoogle Scholar | 23420871PubMed |
Renaudin, C. D., Troedsson, M. H., Gillis, C. L., King, V. L., and Bodena, A. (1997). Ultrasonographic evaluation of the equine placenta by transrectal and transabdominal approach in the normal pregnant mare. Theriogenology 47, 559–573.
| Ultrasonographic evaluation of the equine placenta by transrectal and transabdominal approach in the normal pregnant mare.Crossref | GoogleScholarGoogle Scholar | 16728008PubMed |
Romero, R., Mazor, M., Brandt, F., Sepulveda, W., Avila, C., Cotton, D. B., and Dinarello, C. A. (1992). Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am. J. Reprod. Immunol. 27, 117–123.
| Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition.Crossref | GoogleScholarGoogle Scholar | 1418402PubMed |
Röther, S., and Meister, G. (2011). Small RNAs derived from longer non-coding RNAs. Biochimie 93, 1905–1915.
| Small RNAs derived from longer non-coding RNAs.Crossref | GoogleScholarGoogle Scholar | 21843590PubMed |
Salomon, C., and Rice, G. E. (2017). Role of exosomes in placental homeostasis and pregnancy disorders. Prog. Mol. Biol. Transl. Sci. 145, 163–179.
| Role of exosomes in placental homeostasis and pregnancy disorders.Crossref | GoogleScholarGoogle Scholar | 28110750PubMed |
Salomon, C., Guanzon, D., Scholz-Romero, K., Longo, S., Correa, P., Illanes, S. E., and Rice, G. E. (2017). Placental exosomes as early biomarker of preeclampsia – potential role of exosomal microRNAs across gestation. J. Clin. Endocrinol. Metab. 102, 3182–3194.
| Placental exosomes as early biomarker of preeclampsia – potential role of exosomal microRNAs across gestation.Crossref | GoogleScholarGoogle Scholar | 28531338PubMed |
Sayed, D., and Abdellatif, M. (2011). MicroRNAs in development and disease. Physiol. Rev. 91, 827–887.
| MicroRNAs in development and disease.Crossref | GoogleScholarGoogle Scholar | 21742789PubMed |
Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63.
| Widespread changes in protein synthesis induced by microRNAs.Crossref | GoogleScholarGoogle Scholar | 18668040PubMed |
Sherman, D. J., Tovbin, J., Lazarovich, T., Avrech, O., Reif, R., Hoffmann, S., Caspi, E., and Boldur, I. (1997). Chorioamnionitis caused by gram-negative bacteria as an etiologic factor in preterm birth. Eur. J. Clin. Microbiol. Infect. Dis. 16, 417–423.
| Chorioamnionitis caused by gram-negative bacteria as an etiologic factor in preterm birth.Crossref | GoogleScholarGoogle Scholar | 9248744PubMed |
Sun, L. Y., Bie, Z. D., Zhang, C. H., Li, H., Li, L. D., and Yang, J. (2016). MiR-154 directly suppresses DKK2 to activate Wnt signaling pathway and enhance activation of cardiac fibroblasts. Cell Biol. Int. 40, 1271–1279.
| MiR-154 directly suppresses DKK2 to activate Wnt signaling pathway and enhance activation of cardiac fibroblasts.Crossref | GoogleScholarGoogle Scholar | 27542661PubMed |
Tanaka, T., Sugaya, S., Kita, K., Arai, M., Kanda, T., Fujii, K., Imazeki, F., Sugita, K., Yokosuka, O., and Suzuki, N. (2012). Inhibition of cell viability by human IFN-beta is mediated by microRNA-431. Int. J. Oncol. 40, 1470–1476.
| 22293894PubMed |
Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192.
| Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.Crossref | GoogleScholarGoogle Scholar | 22517427PubMed |
Tita, A. T. N., and Andrews, W. W. (2010). Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 37, 339–354.
| Diagnosis and management of clinical chorioamnionitis.Crossref | GoogleScholarGoogle Scholar |
Ventura, A., Young, A. G., Winslow, M. M., Lintault, L., Meissner, A., Erkeland, S. J., Newman, J., Bronson, R. T., Crowley, D., Stone, J. R., Jaenisch, R., Sharp, P. A., and Jacks, T. (2008). Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886.
| Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters.Crossref | GoogleScholarGoogle Scholar | 18329372PubMed |
Wang, K., Zhang, S., Weber, J., Baxter, D., and Galas, D. J. (2010). Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38, 7248–7259.
| Export of microRNAs and microRNA-protective protein by mammalian cells.Crossref | GoogleScholarGoogle Scholar | 20615901PubMed |
Wilczynska, A., and Bushell, M. (2015). The complexity of miRNA-mediated repression. Cell Death Differ. 22, 22–33.
| The complexity of miRNA-mediated repression.Crossref | GoogleScholarGoogle Scholar | 25190144PubMed |
Wu, X., Kim, T. K., Baxter, D., Scherler, K., Gordon, A., Fong, O., Etheridge, A., Galas, D. J., and Wang, K. (2017). sRNAnalyzer – a flexible and customizable small RNA sequencing data analysis pipeline. Nucleic Acids Res. 45, 12140–12151.
| sRNAnalyzer – a flexible and customizable small RNA sequencing data analysis pipeline.Crossref | GoogleScholarGoogle Scholar | 29069500PubMed |
Wynn, M. A. A., Ball, B. A. J. M., Esteller-Vico, A., Canisso, I. F., Squires, E. L., and Troedsson, M. H. (2017). Changes in maternal pregnane concentrations in mares with experimentally-induced, ascending placentitis. Equine Vet. J , .
Xiao, C., Srinivasan, L., Calado, D. P., Patterson, H. C., Zhang, B., Wang, J., Henderson, J. M., Kutok, J. L., and Rajewsky, K. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol. 9, 405–414.
| Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes.Crossref | GoogleScholarGoogle Scholar | 18327259PubMed |
Yang, W., Wang, A., Zhao, C., Li, Q., Pan, Z., Han, X., Zhang, C., Wang, G., Ji, C., Wang, G., Jia, G., Ju, J., Gao, W., Yu, W., Liu, X., Chen, X., Feng, W., Gao, Z., Li, J., and Ren, C. (2016). miR-125b enhances IL-8 production in early-onset severe preeclampsia by targeting sphingosine-1-phosphate lyase 1. PLoS One 11, e0166940.
| miR-125b enhances IL-8 production in early-onset severe preeclampsia by targeting sphingosine-1-phosphate lyase 1.Crossref | GoogleScholarGoogle Scholar | 28036389PubMed |
Zhang, Z., Wang, X., Zhang, L., Shi, Y., Wang, J., and Yan, H. (2017). Wnt/beta-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia Mol. Med. Rep. 16, 1007–1013.
| Wnt/beta-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsiaCrossref | GoogleScholarGoogle Scholar | 29067442PubMed |