Caveolin-1 promotes trophoblast cell invasion through the focal adhesion kinase (FAK) signalling pathway during early human placental development
Zhihui Dai A * , Fei Sheng B * , Ningxia Sun B , Yixuan Ji B , Qiuying Liao A , Shuhan Sun A , Fu Yang A C and Wen Li B CA Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China.
B Centre of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
C Corresponding authors. Emails: yangfusq1997@smmu.edu.cn; liwen@smmu.edu.cn
Reproduction, Fertility and Development 31(6) 1057-1067 https://doi.org/10.1071/RD18296
Submitted: 30 July 2018 Accepted: 7 January 2019 Published: 4 April 2019
Abstract
Normal implantation and placental development depend on the appropriate differentiation and invasion of trophoblast cells. Inadequate trophoblast cell invasion results in pregnancy-related disorders, which endanger both mother and fetus; however, the mechanism of early placental development has not been fully explained. In this study we conducted gene expression profile analysis using mouse placental tissues at different developmental stages (embryonic day (E)7.5, E14.5 and E19.5) using series tests of cluster (STC) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses. Focal adhesion kinase (FAK) signalling pathway-related gene expression levels were verified using quantitative reverse transcription polymerase chain reaction and western blot. The results showed that caveolin-1 (Cav1) was downregulated in the placenta of unexplained spontaneous abortion subjects compared with that of induced abortion. Furthermore, by modulating CAV1 expression levels, CAV1 was shown to promote human trophoblast cell proliferation, migration and invasion by activating the FAK signalling pathway. These results indicate that CAV1 and the FAK signalling pathway are crucial for early placental development, which sheds new light on our understanding of the mechanisms of human trophoblast cell invasion and early development of the placenta.
Additional keywords: CAV1, gene expression profile, placenta, spontaneous abortion.
References
Altermann, E., and Klaenhammer, T. R. (2005). PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics 6, 60.| PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.Crossref | GoogleScholarGoogle Scholar | 15869710PubMed |
Aplin, J. D. (1991). Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J. Cell Sci. 99, 681–692.
| 1769999PubMed |
Boyanapalli, M., Lahoud, O. B., Messiaen, L., Kim, B., Anderle de Sylor, M. S., Duckett, S. J., Somara, S., and Mikol, D. D. (2006). Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt. Biochem. Biophys. Res. Commun. 340, 1200–1208.
| Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt.Crossref | GoogleScholarGoogle Scholar | 16405917PubMed |
Cheng, J. C., Chang, H. M., and Leung, P. C. K. (2017). TGF-beta1 inhibits human trophoblast cell invasion by upregulating connective tissue growth factor expression. Endocrinology 158, 3620–3628.
| TGF-beta1 inhibits human trophoblast cell invasion by upregulating connective tissue growth factor expression.Crossref | GoogleScholarGoogle Scholar | 28977597PubMed |
Cho, W. J., Chow, A. K., Schulz, R., and Daniel, E. E. (2007). Matrix metalloproteinase-2, caveolins, focal adhesion kinase and c-Kit in cells of the mouse myocardium. J. Cell. Mol. Med. 11, 1069–1086.
| Matrix metalloproteinase-2, caveolins, focal adhesion kinase and c-Kit in cells of the mouse myocardium.Crossref | GoogleScholarGoogle Scholar | 17979883PubMed |
Cift, T., Begum, A. M., Aslan Cetin, B., Erenel, H., Tuten, A., Bulut, B., Yilmaz, N., Ekmekci, H., and Gezer, A. (2018). Serum caveolin-1 levels in patients with preeclampsia. J. Matern. Fetal Neonatal Med. 24, 1–6.
| Serum caveolin-1 levels in patients with preeclampsia.Crossref | GoogleScholarGoogle Scholar |
Correia-Branco, A., Keating, E., and Martel, F. (2018). Placentation-related processes in a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) are affected by several xenobiotics. Drug Chem. Toxicol. 3, 1–5.
| Placentation-related processes in a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) are affected by several xenobiotics.Crossref | GoogleScholarGoogle Scholar |
Demir, R., Seval, Y., and Huppertz, B. (2007). Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem. 109, 257–265.
| Vasculogenesis and angiogenesis in the early human placenta.Crossref | GoogleScholarGoogle Scholar | 17574656PubMed |
Deng, Q., Liu, X., Yang, Z., and Xie, L. (2018). Expression of N-acetylglucosaminyltransferase III promotes trophoblast invasion and migration in early human placenta. Reprod. Sci , .
| Expression of N-acetylglucosaminyltransferase III promotes trophoblast invasion and migration in early human placenta.Crossref | GoogleScholarGoogle Scholar | 29642803PubMed |
Fu, J., Lv, X., Lin, H., Wu, L., Wang, R., Zhou, Z., Zhang, B., Wang, Y. L., Tsang, B. K., Zhu, C., and Wang, H. (2010). Ubiquitin ligase cullin 7 induces epithelial–mesenchymal transition in human choriocarcinoma cells. J. Biol. Chem. 285, 10870–10879.
| Ubiquitin ligase cullin 7 induces epithelial–mesenchymal transition in human choriocarcinoma cells.Crossref | GoogleScholarGoogle Scholar | 20139075PubMed |
Fu, Y., Wei, J., Dai, X., and Ye, Y. (2017). Increased NDRG1 expression attenuate trophoblast invasion through ERK/MMP-9 pathway in preeclampsia. Placenta 51, 76–81.
| Increased NDRG1 expression attenuate trophoblast invasion through ERK/MMP-9 pathway in preeclampsia.Crossref | GoogleScholarGoogle Scholar | 28292472PubMed |
Gupta, S. K., Malhotra, S. S., Malik, A., Verma, S., and Chaudhary, P. (2016). Cell signaling pathways involved during invasion and syncytialization of trophoblast cells. Am. J. Reprod. Immunol. 75, 361–371.
| Cell signaling pathways involved during invasion and syncytialization of trophoblast cells.Crossref | GoogleScholarGoogle Scholar | 26490782PubMed |
Ilić, D., Genbačev, O., Jin, F., Caceres, E., Almeida, E. A. C., Bellingard-Dubouchaud, V., Schaefer, E. M., Damsky, C. H., and Fisher, S. J. (2001). Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am. J. Pathol. 159, 93–108.
| Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 11438458PubMed |
Kisanga, E. P., Tang, Z., Guller, S., and Whirledge, S. (2018). Glucocorticoid signaling regulates cell invasion and migration in the human first-trimester trophoblast cell line Sw.71. Am. J. Reprod. Immunol. 80, e12974.
| Glucocorticoid signaling regulates cell invasion and migration in the human first-trimester trophoblast cell line Sw.71.Crossref | GoogleScholarGoogle Scholar | 29774963PubMed |
Knöfler, M. (2010). Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol. 54, 269–280.
| Critical growth factors and signalling pathways controlling human trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 19876833PubMed |
Kovtun, O., Tillu, V. A., Ariotti, N., Parton, R. G., and Collins, B. M. (2015). Cavin family proteins and the assembly of caveolae. J. Cell Sci. 128, 1269–1278.
| Cavin family proteins and the assembly of caveolae.Crossref | GoogleScholarGoogle Scholar | 25829513PubMed |
Lee, S. H., Lee, Y. J., Park, S. W., Kim, H. S., and Han, H. J. (2011). Caveolin-1 and integrin beta1 regulate embryonic stem cell proliferation via p38 MAPK and FAK in high glucose. J. Cell. Physiol. 226, 1850–1859.
| Caveolin-1 and integrin beta1 regulate embryonic stem cell proliferation via p38 MAPK and FAK in high glucose.Crossref | GoogleScholarGoogle Scholar | 21506116PubMed |
Li, Y. Q., Liu, H. Y., Cao, L. L., Wu, Y. Y., Shi, X. W., Qiao, F. Y., Feng, L., Deng, D. R., and Gong, X. (2017). Hypoxia downregulates the angiogenesis in human placenta via Notch1 signaling pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci. 37, 541–546.
| Hypoxia downregulates the angiogenesis in human placenta via Notch1 signaling pathway.Crossref | GoogleScholarGoogle Scholar | 28786053PubMed |
Liu, J., Cao, B., Li, Y. X., Wu, X. Q., and Wang, Y. L. (2010). GnRH I and II up-regulate MMP-26 expression through the JNK pathway in human cytotrophoblasts. Reprod. Biol. Endocrinol. 8, 5.
| GnRH I and II up-regulate MMP-26 expression through the JNK pathway in human cytotrophoblasts.Crossref | GoogleScholarGoogle Scholar | 20074375PubMed |
Liu, T., Zhang, T., Zhou, F., Wang, J., Zhai, X., Mu, N., Park, J., Liu, M., Liu, W., Shang, P., Ding, Y., Wen, A., and Li, Y. (2017). Identification of genes and pathways potentially related to PHF20 by gene expression profile analysis of glioblastoma U87 cell line. Cancer Cell Int. 17, 87.
| Identification of genes and pathways potentially related to PHF20 by gene expression profile analysis of glioblastoma U87 cell line.Crossref | GoogleScholarGoogle Scholar | 29033691PubMed |
Liu, M., Wang, Y., Lu, H., Wang, H., Shi, X., Shao, X., Li, Y. X., Zhao, Y., and Wang, Y. L. (2018). miR-518b Enhances human trophoblast cell proliferation through targeting Rap1b and activating Ras-MAPK signal. Front. Endocrinol. (Lausanne) 9, 100.
| miR-518b Enhances human trophoblast cell proliferation through targeting Rap1b and activating Ras-MAPK signal.Crossref | GoogleScholarGoogle Scholar | 29599749PubMed |
Luan, S., Li, P., and Yi, T. (2018). Series test of cluster and network analysis for lupus nephritis, before and after IFN-K-immunosuppressive therapy. Nephrology (Carlton) 23, 997–1006.
| Series test of cluster and network analysis for lupus nephritis, before and after IFN-K-immunosuppressive therapy.Crossref | GoogleScholarGoogle Scholar | 28869321PubMed |
Lunghi, L., Ferretti, M. E., Medici, S., Biondi, C., and Vesce, F. (2007). Control of human trophoblast function. Reprod. Biol. Endocrinol. 5, 6.
| Control of human trophoblast function.Crossref | GoogleScholarGoogle Scholar | 17288592PubMed |
MacPhee, D. J., Mostachfi, H., Han, R., Lye, S. J., Post, M., and Caniggia, I. (2001). Focal adhesion kinase is a key mediator of human trophoblast development. Lab. Invest. 81, 1469–1483.
| Focal adhesion kinase is a key mediator of human trophoblast development.Crossref | GoogleScholarGoogle Scholar | 11706056PubMed |
Matsumoto, H., Sato, Y., Horie, A., Suginami, K., Tani, H., Hattori, A., Araki, Y., Kagami, K., Konishi, I., and Fujiwara, H. (2016). CD9 suppresses human extravillous trophoblast invasion. Placenta 47, 105–112.
| CD9 suppresses human extravillous trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 27780531PubMed |
Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56.
| Focal adhesion kinase: in command and control of cell motility.Crossref | GoogleScholarGoogle Scholar | 15688067PubMed |
Park, D. S., Woodman, S. E., Schubert, W., Cohen, A. W., Frank, P. G., Chandra, M., Shirani, J., Razani, B., Tang, B., Jelicks, L. A., Factor, S. M., Weiss, L. M., Tanowitz, H. B., and Lisanti, M. P. (2002). Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am. J. Pathol. 160, 2207–2217.
| Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype.Crossref | GoogleScholarGoogle Scholar | 12057923PubMed |
Pennington, K. A., Schlitt, J. M., Jackson, D. L., Schulz, L. C., and Schust, D. J. (2012). Preeclampsia: multiple approaches for a multifactorial disease. Dis. Model. Mech. 5, 9–18.
| Preeclampsia: multiple approaches for a multifactorial disease.Crossref | GoogleScholarGoogle Scholar | 22228789PubMed |
Pereira, R. D., DeLong, N. E., Wang, R. C., Yazdi, F. T., Holloway, A. C., and Raha, S. (2015). Angiogenesis in the placenta: the role of reactive oxygen species signaling. BioMed Res. Int. 2015, 814543.
| Angiogenesis in the placenta: the role of reactive oxygen species signaling.Crossref | GoogleScholarGoogle Scholar | 25705690PubMed |
Qiu, Q., Yang, M., Tsang, B. K., and Gruslin, A. (2004). EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3K and MAPK signalling pathways. Reproduction 128, 355–363.
| EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3K and MAPK signalling pathways.Crossref | GoogleScholarGoogle Scholar | 15333786PubMed |
Red-Horse, K., Zhou, Y., Genbacev, O., Prakobphol, A., Foulk, R., McMaster, M., and Fisher, S. J. (2004). Trophoblast differentiation during embryo implantation and formation of the maternal–fetal interface. J. Clin. Invest. 114, 744–754.
| Trophoblast differentiation during embryo implantation and formation of the maternal–fetal interface.Crossref | GoogleScholarGoogle Scholar | 15372095PubMed |
Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., and Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.
| Caveolin, a protein component of caveolae membrane coats.Crossref | GoogleScholarGoogle Scholar | 1739974PubMed |
Sharma, S., Godbole, G., and Modi, D. (2016). Decidual control of trophoblast invasion. Am. J. Reprod. Immunol. 75, 341–350.
| Decidual control of trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 26755153PubMed |
Smith-Jackson, K., Hentschke, M. R., Poli-de-Figueiredo, C. E., Pinheiro da Costa, B. E., Kurlak, L. O., Broughton Pipkin, F., Czajka, A., and Mistry, H. D. (2015). Placental expression of eNOS, iNOS and the major protein components of caveolae in women with pre-eclampsia. Placenta 36, 607–610.
| Placental expression of eNOS, iNOS and the major protein components of caveolae in women with pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 25707739PubMed |
Sohn, J., Brick, R. M., and Tuan, R. S. (2016). From embryonic development to human diseases: the functional role of caveolae/caveolin. Birth Defects Res. C Embryo Today 108, 45–64.
| From embryonic development to human diseases: the functional role of caveolae/caveolin.Crossref | GoogleScholarGoogle Scholar | 26991990PubMed |
Sotgia, F., Martinez-Outschoorn, U. E., Howell, A., Pestell, R. G., Pavlides, S., and Lisanti, M. P. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu. Rev. Pathol. 7, 423–467.
| Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms.Crossref | GoogleScholarGoogle Scholar | 22077552PubMed |
Tang, C. L., Zhao, H. B., Li, M. Q., Du, M. R., Meng, Y. H., and Li, D. J. (2012). Focal adhesion kinase signaling is necessary for the Cyclosporin A-enhanced migration and invasion of human trophoblast cells. Placenta 33, 704–711.
| Focal adhesion kinase signaling is necessary for the Cyclosporin A-enhanced migration and invasion of human trophoblast cells.Crossref | GoogleScholarGoogle Scholar | 22766276PubMed |
Wang, N., Feng, Y., Xu, J., Zou, J., Chen, M., He, Y., Liu, H., Xue, M., and Gu, Y. (2018). miR-362–3p Regulates cell proliferation, migration and invasion of trophoblastic cells under hypoxia through targeting Pax3. Biomed. Pharmacother. 99, 462–468.
| miR-362–3p Regulates cell proliferation, migration and invasion of trophoblastic cells under hypoxia through targeting Pax3.Crossref | GoogleScholarGoogle Scholar | 29665647PubMed |
Xiong, N., Li, S., Tang, K., Bai, H., Peng, Y., Yang, H., Wu, C., and Liu, Y. (2017). Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: roles of FAK/Src and ROCK/p-MLC pathways. Biochim. Biophys. Acta Mol. Cell Res. 1864, 12–22.
| Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: roles of FAK/Src and ROCK/p-MLC pathways.Crossref | GoogleScholarGoogle Scholar | 27773611PubMed |
Zhang, J., Ming-Yong, L. I., Yuan, H. E., Bai, H., and Fan, P. (2017a). Micro-electrical field may activate FAK through non-integrin pathway to promote trophoblast cells migration/invasion. In ‘Practical Journal of Clinical Medicine’.
Zhang, Y., Dang, Y. W., Wang, X., Yang, X., Zhang, R., Lv, Z. L., and Chen, G. (2017b). Comprehensive analysis of long non-coding RNA PVT1 gene interaction regulatory network in hepatocellular carcinoma using gene microarray and bioinformatics. Am. J. Transl. Res. 9, 3904–3917.
| 28979669PubMed |
Zhao, X., and Guan, J. L. (2011). Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv. Drug Deliv. Rev. 63, 610–615.
| Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 21118706PubMed |
Zhou, L., Gao, H. F., Liu, D. S., Feng, J. Y., Gao, D. D., and Xia, W. (2018). Gene expression profiling of brain metastatic cell from triple negative breast cancer: understanding the molecular events. Gene 640, 21–27.
| Gene expression profiling of brain metastatic cell from triple negative breast cancer: understanding the molecular events.Crossref | GoogleScholarGoogle Scholar | 29024707PubMed |
Zhu, X. M., Han, T., Sargent, I. L., Wang, Y. L., and Yao, Y. Q. (2009). Conditioned medium from human decidual stromal cells has a concentration-dependent effect on trophoblast cell invasion. Placenta 30, 74–78.
| Conditioned medium from human decidual stromal cells has a concentration-dependent effect on trophoblast cell invasion.Crossref | GoogleScholarGoogle Scholar | 19007982PubMed |