Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Sperm macrocephaly syndrome in the ostrich Struthio camelus: morphological characteristics and implications for motility

L. du Plessis https://orcid.org/0000-0002-1330-1334 A F , M. Bonato B , C. Durandt C , S. W. P. Cloete B D and J. T. Soley E
+ Author Affiliations
- Author Affiliations

A Electron Microscope Unit, Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.

B Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.

C Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, South Africa.

D Directorate Animal Sciences: Elsenburg, Private Bag X1, Elsenburg 7607, South Africa.

E Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.

F Corresponding author. Email: lizette.duplessis@up.ac.za

Reproduction, Fertility and Development 31(4) 712-723 https://doi.org/10.1071/RD18242
Submitted: 26 June 2018  Accepted: 23 October 2018   Published: 21 November 2018

Abstract

Sperm macrocephaly syndrome (SMS) is characterised by a high percentage of spermatozoa with enlarged heads and multiple tails, and is related to infertility. Although this multiple sperm defect has been described in other mammalian species, little is known about this anomaly in birds. Morphological examination of semen from nine South African black ostriches (Struthio camelus var. domesticus) involved in an AI trial revealed the variable presence of spermatozoa with large heads and multiple tails. Ultrastructural features of the defect were similar to those reported in mammals except that the multiple tails were collectively bound within the plasmalemma. The tails were of similar length and structure to those of normal spermatozoa, and the heads were 1.6-fold longer, emphasising the uniformity of the anomaly across vertebrate species. Flow cytometry identified these cells as diploid and computer-aided sperm analysis revealed that they swim slower but straighter than normal spermatozoa, probably due to the increased drag of the large head and constrained movement of the merged multiple tails. The high incidence of this defect in one male ostrich indicates that, although rare, SMS can occur in birds and may potentially have an adverse effect on breeding programs, particularly for endangered species.

Additional keywords: CASA, large heads, multiple tails, ultrastructure.


References

Barna, J., and Wishart, G. J. (2003). Excess nuclear DNA in spermatozoa of guinea fowl. Theriogenology 59, 1685–1691.
Excess nuclear DNA in spermatozoa of guinea fowl.Crossref | GoogleScholarGoogle Scholar |

Barth, A. D., and Oko, R. J. (1989). ‘Abnormal Morphology of Bovine Spermatozoa.’ (Iowa State University Press: Ames.)

Ben Khelifa, M., Zouari, R., Harbuz, R., Halouani, L., Arnoult, C., Lunardi, J., and Ray, P. F. (2011). A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis. Mol. Hum. Reprod. 17, 762–768.
A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis.Crossref | GoogleScholarGoogle Scholar |

Benzacken, B., Gavelle, F. M., Martin-Pont, B., Dupuy, O., Lièvre, N., Hugues, J.-N., and Wolf, J.-P. (2001). Familial sperm polyploidy induced by genetic spermatogenesis failure. Hum. Reprod. 16, 2646–2651.
Familial sperm polyploidy induced by genetic spermatogenesis failure.Crossref | GoogleScholarGoogle Scholar |

Bertschinger, H. J. (1975). The hereditary occurrence of diploid spermatozoa in the semen of Brown Swiss bulls. Ph.D. Thesis, University of Zurich.

Birkhead, T. R., Martinez, J. G., Burke, T., and Froman, D. P. (1999). Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. Biol. Sci. 266, 1759–1764.
Sperm mobility determines the outcome of sperm competition in the domestic fowl.Crossref | GoogleScholarGoogle Scholar |

Boldman, K. G., Kriese, L. A., Van Vleck, L. D., Van Tassell, C. P., and Kachman, S. D. (1995). ‘A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances.’ (United States Department of Agriculture, Agricultural Research Service.)

Bonato, B., and Cloete, S. W. P. (2013). Artificial insemination technology for ostriches: a way forward. AgriPROBE 10, 24–26.

Bonato, M., Rybnik-Trzaskowska, P. K., Malecki, I. A., Cornwallis, C. K., and Cloete, S. W. P. (2011). Twice daily collection yields greater semen output and does not affect male libido in the ostrich. Anim. Reprod. Sci. 123, 258–264.
Twice daily collection yields greater semen output and does not affect male libido in the ostrich.Crossref | GoogleScholarGoogle Scholar |

Bonato, M., Cornwallis, C. K., Malecki, I. A., Rybnik-Trzaskowska, P. K., and Cloete, S. W. P. (2012). The effect of temperature and pH on the motility and viability of ostrich sperm. Anim. Reprod. Sci. 133, 123–128.
The effect of temperature and pH on the motility and viability of ostrich sperm.Crossref | GoogleScholarGoogle Scholar |

Bonato, M., Malecki, I. A., Rybnik-Trzaskowska, P. K., Cornwallis, C. K., and Cloete, S. W. P. (2014). Predicting ejaculate quality and libido in male ostriches: effect of season and age. Anim. Reprod. Sci. 151, 49–55.
Predicting ejaculate quality and libido in male ostriches: effect of season and age.Crossref | GoogleScholarGoogle Scholar |

Bonato, M., Cherry, M. I., and Cloete, S. W. P. (2015). Mate choice, maternal investment and implications for ostrich welfare in a farming environment. Appl. Anim. Behav. Sci. 171, 1–7.
Mate choice, maternal investment and implications for ostrich welfare in a farming environment.Crossref | GoogleScholarGoogle Scholar |

Bonet, S., and Briz, M. (1991). New data on aberrant spermatozoa in the ejaculate of Sus domesticus. Theriogenology 35, 725–730.
New data on aberrant spermatozoa in the ejaculate of Sus domesticus.Crossref | GoogleScholarGoogle Scholar |

Carothers, A. D., and Beatty, R. A. (1975). The recognition and incidence of haploid and polyploid spermatozoa in man, rabbit and mouse. J. Reprod. Fertil. 44, 487–500.
The recognition and incidence of haploid and polyploid spermatozoa in man, rabbit and mouse.Crossref | GoogleScholarGoogle Scholar |

Chelmońska, B., Jerysz, A., Łukaszewicz, E., Kowalczyk, A., and Malecki, I. (2008). Semen collection from Japanese quail (Coturnix japonica) using a teaser female. Turk. J. Vet. Anim. Sci. 32, 19–24.

Chianese, C., Fino, M. G., Riera Escamilla, A., López Rodrigo, O., Vinci, S., Guarducci, E., Daguin, F., Muratori, M., Tamburrino, L., Lo Giacco, D., Ars, E., Bassas, L., Costa, M., Pisatauro, V., Noci, I., Coccia, E., Provenzano, A., Ruiz-Castañé, E., Giglio, S., Piomboni, P., and Krausz, C. (2015). Comprehensive investigation in patients affected by sperm macrocephaly and globozoospermia. Andrology 3, 203–212.
Comprehensive investigation in patients affected by sperm macrocephaly and globozoospermia.Crossref | GoogleScholarGoogle Scholar |

Ciereszko, A., Rybnik, P. K., Horbanczuk, J. O., Dietrich, G. J., Deas, A., Slowinska, M., Liszewska, E., and Malecki, I. A. (2010). Biochemical characterization and sperm motility parameters of ostrich (Struthio camelus) semen. Anim. Reprod. Sci. 122, 222–228.
Biochemical characterization and sperm motility parameters of ostrich (Struthio camelus) semen.Crossref | GoogleScholarGoogle Scholar |

Cloete, S. W. P., and Malecki, I. A. (2011). Breeder welfare: the past, present and future. In ‘The Welfare of Farmed Ratites’. (Eds P. Glatz, C. Lunam, and I. Malecki.) pp. 13–44. (Springer-Verlag: Heidelberg.)

Cornwallis, C. K., and O’Connor, E. (2009). Sperm: seminal fluid interactions and the adjustment of sperm quality in relation to female attractiveness. Proc. Biol. Sci. 276, 3467–3475.
Sperm: seminal fluid interactions and the adjustment of sperm quality in relation to female attractiveness.Crossref | GoogleScholarGoogle Scholar |

Coutton, C., Escoffier, J., Martinez, G., Arnoult, C., and Ray, P. F. (2015). Teratozospermia: spotlight on the main genetic actors in the human. Hum. Reprod. Update 21, 455–485.
Teratozospermia: spotlight on the main genetic actors in the human.Crossref | GoogleScholarGoogle Scholar |

De Braekeleer, M., Nguyen, M. H., Morel, F., and Perrin, A. (2015). Genetic aspects of monomorphic teratozoospermia: a review. J. Assist. Reprod. Genet. 32, 615–623.
Genetic aspects of monomorphic teratozoospermia: a review.Crossref | GoogleScholarGoogle Scholar |

Degen, A. A., Weil, S., Rosenstrauch, A., Kam, M., and Dawson, A. (1994). Seasonal plasma levels of luteinizing and steroid hormones in male and female domestic ostriches (Struthio camelus). Gen. Comp. Endocrinol. 93, 21–27.
Seasonal plasma levels of luteinizing and steroid hormones in male and female domestic ostriches (Struthio camelus).Crossref | GoogleScholarGoogle Scholar |

Devillard, F., Metzler-Guillemain, C., Pelletier, R., DeRobertis, C., Bergues, U., Hennebicq, S., Guichaoua, M., Sèle, B., and Rousseaux, S. (2002). Polyploidy in large-headed sperm: FISH study of three cases. Hum. Reprod. 17, 1292–1298.
Polyploidy in large-headed sperm: FISH study of three cases.Crossref | GoogleScholarGoogle Scholar |

Dieterich, K., Soto Rifo, R., Faure, A. K., Hennebicq, S., Ben Amar, B., Zahi, M., Perrin, J., Martinez, D., Sèle, B., Jouk, P., Ohlmann, T., Rousseaux, S., Lunardi, J., and Ray, P. F. (2007). Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat. Genet. 39, 661–665.
Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility.Crossref | GoogleScholarGoogle Scholar |

du Plessis, L., and Soley, J. T. (2011). Incidence, structure and morphological classification of abnormal sperm in the emu (Dromaius novaehollandiae). Theriogenology 75, 589–601.
Incidence, structure and morphological classification of abnormal sperm in the emu (Dromaius novaehollandiae).Crossref | GoogleScholarGoogle Scholar |

du Plessis, L., and Soley, J. T. (2012). Structural peculiarities associated with multiflagellate sperm in the emu, Dromaius novaehollandiae. Theriogenology 78, 1094–1101.
Structural peculiarities associated with multiflagellate sperm in the emu, Dromaius novaehollandiae.Crossref | GoogleScholarGoogle Scholar |

du Plessis, L., Malecki, I., Bonato, M., Smith, M., Cloete, S., and Soley, J. (2014). A morphological classification of sperm defects in the ostrich (Struthio camelus). Anim. Reprod. Sci. 150, 130–138.
A morphological classification of sperm defects in the ostrich (Struthio camelus).Crossref | GoogleScholarGoogle Scholar |

Escalier, D. (1984). Human spermatozoa with large heads and multiple flagella: a quantitative ultrastructural study of 6 cases. Biol. Cell 48, 65–74.
Human spermatozoa with large heads and multiple flagella: a quantitative ultrastructural study of 6 cases.Crossref | GoogleScholarGoogle Scholar |

Escalier, D. (2002). Genetic approach to male meiotic division deficiency: the human macronuclear spermatozoa. Mol. Hum. Reprod. 8, 1–7.
Genetic approach to male meiotic division deficiency: the human macronuclear spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Essa, F., Cloete, S. W. P., and Fossey, A. (2004). Parentage determination of ostriches in breeding flocks using microsatellite markers. In ‘Proceedings of the 3rd International Ratite Science Symposium of the World’s Poultry Science Association (WPSA) and 12th World Ostrich Congress’. (Ed. E. Carbajo) pp. 29–33. (World’s Poultry Science Association: Beekbergen, The Netherlands.)

Ferdinand, A. (1992). Licht- und elektronenmikroskopische Untersuchungen zur Morphologie von Ganterspermatozoen. Ph.D. Thesis, University of Veterinary Medicine, Hannover.

Gasparini, C., Simmons, L. W., Beveridge, M., and Evans, J. P. (2010). Sperm swimming velocity predicts competitive fertilization success in the green swordtail Xiphophorus helleri. PLoS One 5, e12146.
Sperm swimming velocity predicts competitive fertilization success in the green swordtail Xiphophorus helleri.Crossref | GoogleScholarGoogle Scholar |

Gatimel, N., Moreau, J., Parinaud, J., and Léandri, R. D. (2017). Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017. Andrology 5, 845–862.
Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017.Crossref | GoogleScholarGoogle Scholar |

Girndt, A., Knief, U., Forstmeier, W., and Kempenaers, B. (2014). Triploid ZZZ Zebra finches Taeniopygia guttata exhibit abnormal sperm heads and poor reproductive performance. Ibis 156, 472–477.
Triploid ZZZ Zebra finches Taeniopygia guttata exhibit abnormal sperm heads and poor reproductive performance.Crossref | GoogleScholarGoogle Scholar |

Girndt, A., Cockburn, G., Sánchez-Tójar, A., Løvlie, H., and Schroeder, J. (2017). Method matters: experimental evidence for shorter avian aperm in faecal compared to abdominal massage samples. PLoS One 12, e0182853.
Method matters: experimental evidence for shorter avian aperm in faecal compared to abdominal massage samples.Crossref | GoogleScholarGoogle Scholar |

Guthauser, B., Vialard, F., Dakouane, M., Izard, V., Albert, M., and Selva, J. (2006). Chromosomal analysis of spermatozoa with normal-sized heads in two infertile patients with macrocephalic sperm head syndrome. Fertil. Steril. 85, 750.e5–750.e7.
Chromosomal analysis of spermatozoa with normal-sized heads in two infertile patients with macrocephalic sperm head syndrome.Crossref | GoogleScholarGoogle Scholar |

Guthauser, B., Boitrelle, F., Albert, M., Ketata, F., Meynant, C., Ferfouri, F., Selve, J., and Vialard, F. (2013). Contraindication of ART following a sperm FISH analysis, even though only 12% of the spermatozoa had large heads. Syst. Biol. Reprod. Med. 59, 214–217.
Contraindication of ART following a sperm FISH analysis, even though only 12% of the spermatozoa had large heads.Crossref | GoogleScholarGoogle Scholar |

Hartley, P. S. (1999). The cryopreservation of semen from non-domestic avian species. M.Phil. Thesis, University of Abertay, Dundee.

Humphries, S., Evans, J. P., and Simmons, L. W. (2008). Sperm competition: linking form to function. BMC Evol. Biol. 8, 319.
Sperm competition: linking form to function.Crossref | GoogleScholarGoogle Scholar |

In’t Veld, P. A., Broekmans, F. J., de Frans, H. F., Pearson, P. L., Pieters, M. H., and van Kooij, R. J. (1997). Intracytoplasmic sperm injection (ICSI) and chromosomal abnormal spermatozoa. Hum. Reprod. 12, 752–754.
Intracytoplasmic sperm injection (ICSI) and chromosomal abnormal spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Katz, D. F., Diel, L., and Overstreet, J. W. (1982). Differences in the movement of morphologically normal and abnormal human seminal spermatozoa. Biol. Reprod. 26, 566–570.
Differences in the movement of morphologically normal and abnormal human seminal spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Klimowicz, M., Łukaszewicz, E., and Dubiel, A. (2005). Effect of collection frequency on quantitative and qualitative characteristics of pigeon (Columba livia) semen. Br. Poult. Sci. 46, 361–365.
Effect of collection frequency on quantitative and qualitative characteristics of pigeon (Columba livia) semen.Crossref | GoogleScholarGoogle Scholar |

Kopp, C., Sukura, A., Tuunainen, E., Gustavsson, I., Parvinen, M., and Andersson, M. (2007). Multinuclear–multiflagellar sperm defect in a bull – a new sterilizing sperm defect. Reprod. Domest. Anim. 42, 208–213.
Multinuclear–multiflagellar sperm defect in a bull – a new sterilizing sperm defect.Crossref | GoogleScholarGoogle Scholar |

Lewis-Jones, I., Aziz, N., Seshadri, S., Douglas, A., and Howard, P. (2003). Sperm chromosomal abnormalities are linked to sperm morphologic deformities. Fertil. Steril. 79, 212–215.
Sperm chromosomal abnormalities are linked to sperm morphologic deformities.Crossref | GoogleScholarGoogle Scholar |

Lin, M., Thorne, M. H., Martin, I., and Jones, R. C. (1995a). Electron microscopy of the seminiferous epithelium in the triploid (ZZZ and ZZW) fowl, Gallus domesticus. J. Anat. 186, 563–576.

Lin, M., Thorne, M. H., Martin, I. C. A., Sheldon, B. L., and Jones, R. C. (1995b). Development of the gonads in triploid (ZZ and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZV). Reprod. Fertil. Dev. 7, 1185–1197.
Development of the gonads in triploid (ZZ and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZV).Crossref | GoogleScholarGoogle Scholar |

Lindsay, C., Staines, H. J., McCormick, P., McCullum, C., Choulani, F., and Wishart, G. J. (1999). Variability in the size of the nucleus in spermatozoa from the Houbara bustards, Chlamydotis undulata undulata. J. Reprod. Fertil. 117, 307–313.
Variability in the size of the nucleus in spermatozoa from the Houbara bustards, Chlamydotis undulata undulata.Crossref | GoogleScholarGoogle Scholar |

Malecki, I. A., Cummins, J. M., Martin, G. B., and Lindsay, D. R. (1998). Effect of collection frequency on semen quality and the frequency of abnormal forms of spermatozoa in the emu. P. Aus. S. Ani. 22, 406.

Malecki, I. A., Rybnik, P. K., and Martin, G. B. (2008). Artificial insemination technology for ratites: a review. Aust. J. Exp. Agric. 48, 1284–1292.
Artificial insemination technology for ratites: a review.Crossref | GoogleScholarGoogle Scholar |

Malo, A. F., Garde, J. J., Soler, A. J., Garcia, A. J., Gomendio, M., and Roldan, E. R. S. (2005). Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol. Reprod. 72, 822–829.
Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Maretta, M. (1979). The ultrastructure of double and multiple flagella of the spermatozoa of a drake. Vet. Med. (Praha) 24, 679–689.

Molinari, E., Mirabelli, M., Raimondo, S., Brussino, A., Gennarelli, G., Bongioanni, F., and Revelli, A. (2013). Sperm macrocephaly syndrome in a patient without AURKC mutations and with a history of recurrent miscarriage. Reprod. Biomed. Online 26, 148–156.
Sperm macrocephaly syndrome in a patient without AURKC mutations and with a history of recurrent miscarriage.Crossref | GoogleScholarGoogle Scholar |

Nistal, M., Paniagua, R., and Herruzo, A. (1977). Multi-tailed spermatozoa in a case with asthenospermia and teratospermia. Virchows Arch. B Cell Pathol. 26, 111–118.

Nwakalor, L. N., Okeke, G. C., and Njoku, D. C. (1988). Semen characteristics of the guinea fowl Numida meleagris meleagris. Theriogenology 29, 545–554.
Semen characteristics of the guinea fowl Numida meleagris meleagris.Crossref | GoogleScholarGoogle Scholar |

Perrin, A., Morel, F., Moy, L., Colleu, D., Amice, V., and de Braekeleer, M. (2008). Study of aneuploidy in large-headed, multiple-tailed spermatozoa: case report and review of the literature. Fertil. Steril. 90, 1201.e13–1207.e17.
Study of aneuploidy in large-headed, multiple-tailed spermatozoa: case report and review of the literature.Crossref | GoogleScholarGoogle Scholar |

Prisant, N., Escalier, D., Soufir, J.-C., Morillon, M., Schoevaert, D., Misrahi, M., and Tachdjian, G. (2007). Ultrastructural nuclear defects and increased chromosome aneuploidies in spermatozoa with elongated heads. Hum. Reprod. 22, 1052–1059.
Ultrastructural nuclear defects and increased chromosome aneuploidies in spermatozoa with elongated heads.Crossref | GoogleScholarGoogle Scholar |

Ray, P. F., Toure, A., Metzler-Guillemain, C., Mitchell, M. J., Arnoult, C., and Coutton, C. (2017). Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin. Genet. 91, 217–232.
Genetic abnormalities leading to qualitative defects of sperm morphology or function.Crossref | GoogleScholarGoogle Scholar |

Revay, T., Kopp, C., Flyckt, A., Taponen, J., Ijäs, R., Nagy, S., Kovacs, A., Rens, W., Rath, D., Hidas, A., Taylor, J. F., and Anderson, M. (2010). Diploid spermatozoa caused by failure of the second meiotic division in a bull. Theriogenology 73, 421–428.
Diploid spermatozoa caused by failure of the second meiotic division in a bull.Crossref | GoogleScholarGoogle Scholar |

Rybnik, P. K., Horbanczuk, J. O., Naranowicz, H., Lukaszewicz, E., and Malecki, I. A. (2007). Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female. Br. Poult. Sci. 48, 635–643.
Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female.Crossref | GoogleScholarGoogle Scholar |

Salisbury, G. W., and Baker, F. N. (1966). Frequency of occurrence of diploid bovine spermatozoa. J. Reprod. Fertil. 11, 477–480.
Frequency of occurrence of diploid bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Santiago-Moreno, J., Castaño, C., Toledano-Díaz, A., Esteso, M. C., López-Sebastián, A., Gañán, N., Hierro, M. J., Campo, J. L., and Blesbois, E. (2015). Characterization of red-legged partridge (Alectoris rufa) sperm: seasonal changes and influence of genetic purity. Poult. Sci. 94, 80–87.
Characterization of red-legged partridge (Alectoris rufa) sperm: seasonal changes and influence of genetic purity.Crossref | GoogleScholarGoogle Scholar |

Santiago-Moreno, J., Esteso, M. C., Villaverde-Morcillo, S., Toledano-Díaz, A., Castaño, C., Velázquez, R., López-Sebastián, A., Goya, A. L., and Martínez, J. G. (2016). Recent advances in bird sperm morphometric analysis and its role in male gamete characterization and reproduction technologies. Asian J. Androl. 18, 882–888.

Schmoll, T., Sanciprian, R., and Kleven, O. (2016). No evidence for effects of formalin storage duration or solvent medium exposure on avian sperm morphology. J. Ornithol. 157, 647–652.
No evidence for effects of formalin storage duration or solvent medium exposure on avian sperm morphology.Crossref | GoogleScholarGoogle Scholar |

Smith, A. M. J., Bonato, M., Dzama, K., Malecki, I. A., and Cloete, S. W. P. (2016). Classification of ostrich sperm characteristics. Anim. Reprod. Sci. 168, 138–150.
Classification of ostrich sperm characteristics.Crossref | GoogleScholarGoogle Scholar |

Smith, A. M. J., Bonato, M., Dzama, K., Malecki, I. A., and Cloete, S. W. P. (2018a). Ostrich specific semen diluent and sperm motility characteristics during in vitro storage. Anim. Reprod. Sci. 193, 107–116.
Ostrich specific semen diluent and sperm motility characteristics during in vitro storage.Crossref | GoogleScholarGoogle Scholar |

Smith, A. M. J., Bonato, M., Dzama, K., Malecki, I. A., and Cloete, S. W. P. (2018b). Mineral profiling of ostrich (Struthio camelus) seminal plasma and its relationship with semen traits and collection day. Anim. Reprod. Sci. 193, 98–106.
Mineral profiling of ostrich (Struthio camelus) seminal plasma and its relationship with semen traits and collection day.Crossref | GoogleScholarGoogle Scholar |

Soley, J. T. (1993). Ultrastructure of ostrich (Struthio camelus) spermatozoa: I. Transmission electron microscopy. Onderstepoort J. Vet. Res. 60, 119–130.

Sontakke, S. D., Umapathy, G., Sivaram, V., Kholkute, S. D., and Shivaji, S. (2004). Semen characteristics, cryopreservation, and successful artificial insemination in the blue rock pigeon (Columba livia). Theriogenology 62, 139–153.
Semen characteristics, cryopreservation, and successful artificial insemination in the blue rock pigeon (Columba livia).Crossref | GoogleScholarGoogle Scholar |

Standerholen, F. B., Myromslien, F. D., Kommisrud, E., Ropstad, E., and Waterhouse, K. E. (2014). Comparison of electronic volume and forward scatter principles of cell selection using flow cytometry for the evaluation of acrosome and plasma membrane integrity of bull spermatozoa. Cytometry 85, 719–728.
Comparison of electronic volume and forward scatter principles of cell selection using flow cytometry for the evaluation of acrosome and plasma membrane integrity of bull spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Støstad, H. N., Johnsen, A., Lifjeld, J. T., and Rowe, M. (2018). Sperm head morphology is associated with sperm swimming speed: a comparative study of songbirds using electron microscopy. Evolution 72, 1918–1932.
Sperm head morphology is associated with sperm swimming speed: a comparative study of songbirds using electron microscopy.Crossref | GoogleScholarGoogle Scholar |

Sun, F., Ko, E., and Martin, R. H. (2006). Is there a relationship between sperm chromosome abnormalities and sperm morphology? Reprod. Biol. Endocrinol. 4, 1.
Is there a relationship between sperm chromosome abnormalities and sperm morphology?Crossref | GoogleScholarGoogle Scholar |

Tabatabaei, S., Batavani, R. A., and Talebi, A. R. (2009). Comparison of semen quality in indigenous and Ross broiler breeder roosters. J. Anim. Vet. Adv. 8, 90–93.

Umapathy, G., Sontakke, S., Reddy, A., Ahmed, S., and Shivaji, S. (2005). Semen characteristics of the captive Indian white-backed vulture. Biol. Reprod. 73, 1039–1045.
Semen characteristics of the captive Indian white-backed vulture.Crossref | GoogleScholarGoogle Scholar |

Viville, S., Mollard, R., Bach, M. L., Falquet, C., Gerlinger, P., and Waters, S. (2000). Do morphological anomalies reflect chromosomal aneuploidies? Hum. Reprod. 15, 2563–2566.
Do morphological anomalies reflect chromosomal aneuploidies?Crossref | GoogleScholarGoogle Scholar |

Wakely, W. J., and Kosin, I. L. (1951). A study of the morphology of the turkey spermatozoa with special reference to the seasonal prevalence of abnormal types. Am. J. Vet. Res. 12, 240–245.

Weissenberg, R., Aviram, A., Golan, R., Lewin, L. M., Levron, J., Madgar, I., Dor, J., Barkai, G., and Goldman, B. (1998). Concurrent use of flow cytometry and fluorescence in-situ hybridization techniques for detecting faulty meiosis in a human sperm sample. Mol. Hum. Reprod. 4, 61–66.
Concurrent use of flow cytometry and fluorescence in-situ hybridization techniques for detecting faulty meiosis in a human sperm sample.Crossref | GoogleScholarGoogle Scholar |

Wishart, G. J., and Palmer, F. H. (1986). Correlation of the fertilising ability of semen from individual male fowls with sperm motility and ATP content. Br. Poult. Sci. 27, 97–102.
Correlation of the fertilising ability of semen from individual male fowls with sperm motility and ATP content.Crossref | GoogleScholarGoogle Scholar |

Wishart, G. J., Lindsay, M., and Knowles-Brown, A. (1999). Sperm quality in a captive-bred golden eagle. J. Reprod. Fertil. Abstr. Ser. 24, 6.

Wishart, G. J., Lindsay, C., Staines, H. J., and McCormick, P. (2002). Semen quality in captive Houbara bustard, Chlamydotis undulata undulata. Reprod. Fertil. Dev. 14, 401–405.
Semen quality in captive Houbara bustard, Chlamydotis undulata undulata.Crossref | GoogleScholarGoogle Scholar |

Yurov, Y. B., Saias, M. J., Vorsanova, S. G., Erny, R., Soloviev, I. V., Sharonin, V. O., Guichaoua, M. R., and Luciani, J. M. (1996). Rapid chromosomal analysis of germ-line cells by FISH: an investigation of fertile male large-headed spermatozoa. Mol. Hum. Reprod. 2, 665–668.
Rapid chromosomal analysis of germ-line cells by FISH: an investigation of fertile male large-headed spermatozoa.Crossref | GoogleScholarGoogle Scholar |