Haemoglobin expression in in vivo murine preimplantation embryos suggests a role in oxygen-regulated gene expression
M. Lim A B , H. M. Brown C , K. L. Kind A D , J. Breen A C E , M. R. Anastasi A , L. J. Ritter F , E. K. Tregoweth G , D. T. Dinh A , J. G. Thompson A B and K. R. Dunning A B HA Robinson Research Institute, Adelaide Medical School, University of Adelaide, SA 5005, Australia.
B Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA 5005, Australia.
C South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
D School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
E Bioinformatics Hub, University of Adelaide, Adelaide, SA 5005, Australia.
F Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
G Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5005, Australia.
H Corresponding author. Email: kylie.dunning@adelaide.edu.au
Reproduction, Fertility and Development 31(4) 724-734 https://doi.org/10.1071/RD17321
Submitted: 7 August 2017 Accepted: 24 October 2018 Published: 28 November 2018
Abstract
Haemoglobin expression is not restricted to erythroid cells. We investigated the gene expression of the haemoglobin subunits haemoglobin, alpha adult chain 1 (Hba-a1) and haemoglobin, beta (Hbb), 2,3-bisphosphoglycerate mutase (Bpgm) and the oxygen-regulated genes BCL2/adenovirus E1B interacting protein 3 (Bnip3), solute carrier family 2 (facilitated glucose transporter), member 1 (Slc2a1) and N-myc downstream regulated gene 1 (Ndrg1) in the murine preimplantation embryo, comparing in vivo to in vitro gene expression. Relatively high levels of Hba-a1 and Hbb were expressed in vivo from the 2-cell to blastocyst stage; in contrast, little or no expression occurred in vitro. We hypothesised that the presence of haemoglobin in vivo creates a low oxygen environment to induce oxygen-regulated gene expression, supported by high expression of Slc2a1 and Ndrg1 in in vivo relative to in vitro embryos. In addition, analysis of an in vitro-derived human embryo gene expression public dataset revealed low expression of haemoglobin subunit alpha (HBA) and HBB, and high expression of BPGM. To explore whether there was a developmental stage-specific effect of haemoglobin, we added exogenous haemoglobin either up to the 4-cell stage or throughout development to the blastocyst stage, but observed no difference in blastocyst rate or the inner cell mass to trophectoderm cell ratio. We conclude that haemoglobin in the in vivo preimplantation embryo raises an interesting premise of potential mechanisms for oxygen regulation, which may influence oxygen-regulated gene expression.
Additional keywords: gene regulation, IVF.
References
Baumann, R., Haller, E. A., Schoning, U., and Weber, M. (1986). Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3 DPG concentration of chick embryo red cells. Dev. Biol. 116, 548–551.| Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3 DPG concentration of chick embryo red cells.Crossref | GoogleScholarGoogle Scholar |
Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91–148.
| Culture of preimplantation embryos: facts and artifacts.Crossref | GoogleScholarGoogle Scholar |
Berthelot, F., and Terqui, M. (1996). Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and two-cell embryos. Reprod. Nutr. Dev. 36, 241–251.
| Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and two-cell embryos.Crossref | GoogleScholarGoogle Scholar |
Bhaskaran, M., Chen, H., Chen, Z., and Liu, L. (2005). Hemoglobin is expressed in alveolar epithelial type II cells. Biochem. Biophys. Res. Commun. 333, 1348–1352.
| Hemoglobin is expressed in alveolar epithelial type II cells.Crossref | GoogleScholarGoogle Scholar |
Biagioli, M., Pinto, M., Cesselli, D., Zaninello, M., Lazarevic, D., Roncaglia, P., Simone, R., Vlachouli, C., Plessy, C., Bertin, N., Beltrami, A., Kobayashi, K., Gallo, V., Santoro, C., Ferrer, I., Rivella, S., Beltrami, C. A., Carninci, P., Raviola, E., and Gustincich, S. (2009). Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc. Natl Acad. Sci. USA 106, 15454–15459.
| Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells.Crossref | GoogleScholarGoogle Scholar |
Bontekoe, S., Mantikou, E., van Wely, M., Seshadri, S., Repping, S., and Mastenbroek, S. (2012). Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst. Rev. 7, CD008950.
Brown, H. M., Anastasi, M. R., Frank, L. A., Kind, K. L., Richani, D., Robker, R. L., Russell, D. L., Gilchrist, R. B., and Thompson, J. G. (2015). Hemoglobin: a gas transport molecule that is hormonally regulated in the ovarian follicle in mice and humans. Biol. Reprod. 92, 26.
| Hemoglobin: a gas transport molecule that is hormonally regulated in the ovarian follicle in mice and humans.Crossref | GoogleScholarGoogle Scholar |
Dassen, H., Kamps, R., Punyadeera, C., Dijcks, F., De Goeij, A., Ederveen, A., Dunselman, G., and Groothuis, P. (2008). Haemoglobin expression in human endometrium. Hum. Reprod. 23, 635–641.
| Haemoglobin expression in human endometrium.Crossref | GoogleScholarGoogle Scholar |
Dickerson, R., and Geis, I. (1983). ‘Hemoglobin: Structure, Function, Evolution, and Pathololgy.’ (Benjamin/Cummings Publishing: Menlo Park, CA.)
Eckert, J., and Niemann, H. (1995). In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media. Theriogenology 43, 1211–1225.
| In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media.Crossref | GoogleScholarGoogle Scholar |
Emara, M., Turner, A. R., and Allalunis-Turner, J. (2014). Hypoxia differentially upregulates the expression of embryonic, fetal and adult hemoglobin in human glioblastoma cells. Int. J. Oncol. 44, 950–958.
| Hypoxia differentially upregulates the expression of embryonic, fetal and adult hemoglobin in human glioblastoma cells.Crossref | GoogleScholarGoogle Scholar |
Feil, D., Lane, M., Roberts, C. T., Kelley, R. L., Edwards, L. J., Thompson, J. G., and Kind, K. L. (2006). Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J. Physiol. 572, 87–96.
| Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development.Crossref | GoogleScholarGoogle Scholar |
Fischer, B., and Bavister, B. D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–679.
| Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits.Crossref | GoogleScholarGoogle Scholar |
Giritharan, G., Talbi, S., Donjacour, A., Di Sebastiano, F., Dobson, A. T., and Rinaudo, P. F. (2007). Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction 134, 63–72.
| Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar |
Gorr, T. A., Wichmann, D., Pilarsky, C., Theurillat, J. P., Fabrizius, A., Laufs, T., Bauer, T., Koslowski, M., Horn, S., Burmester, T., Hankeln, T., and Kristiansen, G. (2011). Old proteins – new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells. Acta Physiol. (Oxf.) 202, 563–581.
| Old proteins – new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells.Crossref | GoogleScholarGoogle Scholar |
Hamatani, T., Carter, M. G., Sharov, A. A., and Ko, M. S. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131.
| Dynamics of global gene expression changes during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar |
Handyside, A. H., and Hunter, S. (1984). A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes. J. Exp. Zool. 231, 429–434.
| A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes.Crossref | GoogleScholarGoogle Scholar |
Ishikawa, N., Ohlmeier, S., Salmenkivi, K., Myllärniemi, M., Rahman, I., Mazur, W., and Kinnula, V. L. (2010). Hemoglobin α and β are ubiquitous in the human lung, decline in idiopathic pulmonary fibrosis but not in COPD. Respir. Res. 11, 123–124.
| Hemoglobin α and β are ubiquitous in the human lung, decline in idiopathic pulmonary fibrosis but not in COPD.Crossref | GoogleScholarGoogle Scholar |
Kim, J. H., Lee, S. H., Kim, S., Jeong, Y. W., Koo, O. J., Hashem, M. D., Park, S. M., Lee, E. G., Hossein, M. S., Kang, S. K., Lee, B. C., and Hwang, W. S. (2006). Embryotrophic effects of ethylenediaminetetraacetic acid and hemoglobin on in vitro porcine embryos development. Theriogenology 66, 449–455.
| Embryotrophic effects of ethylenediaminetetraacetic acid and hemoglobin on in vitro porcine embryos development.Crossref | GoogleScholarGoogle Scholar |
Kind, K. L., Collett, R. A., Harvey, A. J., and Thompson, J. G. (2005). Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol. Reprod. Dev. 70, 37–44.
| Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar |
Kind, K. L., Banwell, K. M., Gebhardt, K. M., Macpherson, A., Gauld, A., Russell, D. L., and Thompson, J. G. (2013). Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus–oocyte complexes. Reprod. Fertil. Dev. 25, 426–438.
| Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar |
Kind, K. L., Tam, K. K., Banwell, K. M., Gauld, A. D., Russell, D. L., Macpherson, A. M., Brown, H. M., Frank, L. A., Peet, D. J., and Thompson, J. G. (2015). Oxygen-regulated gene expression in murine cumulus cells. Reprod. Fertil. Dev. 27, 407–418.
| Oxygen-regulated gene expression in murine cumulus cells.Crossref | GoogleScholarGoogle Scholar |
Lee, M. T., Bonneau, A. R., and Giraldez, A. J. (2014). Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581–613.
| Zygotic genome activation during the maternal-to-zygotic transition.Crossref | GoogleScholarGoogle Scholar |
Levy, A. P., Asleh, R., Blum, S., Levy, N. S., Miller-Lotan, R., Kalet-Litman, S., Anbinder, Y., Lache, O., Nakhoul, F. M., Asaf, R., Farbstein, D., Pollak, M., Soloveichik, Y. Z., Strauss, M., Alshiek, J., Livshits, A., Schwartz, A., Awad, H., Jad, K., and Goldenstein, H. (2010). Haptoglobin: basic and clinical aspects. Antioxid. Redox Signal. 12, 293–304.
| Haptoglobin: basic and clinical aspects.Crossref | GoogleScholarGoogle Scholar |
Li, X., Wu, Z., Wang, Y., Mei, Q., Fu, X., and Han, W. (2013). Characterization of adult α- and β-globin elevated by hydrogen peroxide in cervical cancer cells that play a cytoprotective role against oxidative insults. PLoS One 8, e54342.
| Characterization of adult α- and β-globin elevated by hydrogen peroxide in cervical cancer cells that play a cytoprotective role against oxidative insults.Crossref | GoogleScholarGoogle Scholar |
Lim, J. M., and Hansel, W. (1998). Improved development of in vitro-derived bovine embryos by use of a nitric oxide scavenger in a cumulus–granulosa cell coculture system. Mol. Reprod. Dev. 50, 45–53.
| Improved development of in vitro-derived bovine embryos by use of a nitric oxide scavenger in a cumulus–granulosa cell coculture system.Crossref | GoogleScholarGoogle Scholar |
Liu, L., Zeng, M., and Stamler, J. S. (1999). Hemoglobin induction in mouse macrophages. Proc. Natl Acad. Sci. USA 96, 6643–6647.
| Hemoglobin induction in mouse macrophages.Crossref | GoogleScholarGoogle Scholar |
Liu, W., Baker, S. S., Baker, R. D., Nowak, N. J., and Zhu, L. (2011). Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. PLoS One 6, e24363.
| Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis.Crossref | GoogleScholarGoogle Scholar |
Meuter, A., Rogmann, L. M., Winterhoff, B. J., Tchkonia, T., Kirkland, J. L., and Morbeck, D. E. (2014). Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. J. Assist. Reprod. Genet. 31, 1259–1267.
| Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen.Crossref | GoogleScholarGoogle Scholar |
Morin, S. J. (2017). Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? J. Assist. Reprod. Genet. 34, 309–314.
| Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system?Crossref | GoogleScholarGoogle Scholar |
Newton, D. A., Rao, K. M. K., Dluhy, R. A., and Baatz, J. E. (2006). Hemoglobin is expressed by alveolar epithelial cells. J. Biol. Chem. 281, 5668–5676.
| Hemoglobin is expressed by alveolar epithelial cells.Crossref | GoogleScholarGoogle Scholar |
Nishi, H., Inagi, R., Kato, H., Tanemoto, M., Kojima, I., Son, D., Fujita, T., and Nangaku, M. (2008). Hemoglobin is expressed by mesangial cells and reduces oxidant stress. J. Am. Soc. Nephrol. 19, 1500–1508.
| Hemoglobin is expressed by mesangial cells and reduces oxidant stress.Crossref | GoogleScholarGoogle Scholar |
Park, S. E., Chung, H. M., Ko, J. J., Lee, B. C., Cha, K. Y., and Lim, J. M. (2000). Embryotropic role of hemoglobin and ethylenediaminetetraacetic acid in preimplantation development of ICR mouse 1-cell embryos. Fertil. Steril. 74, 996–1000.
| Embryotropic role of hemoglobin and ethylenediaminetetraacetic acid in preimplantation development of ICR mouse 1-cell embryos.Crossref | GoogleScholarGoogle Scholar |
Park, E. S., Hwang, W. S., Jang, G., Cho, J. K., Kang, S. K., Lee, B. C., Han, J. Y., and Lim, J. M. (2004a). Incidence of apoptosis in clone embryos and improved development by the treatment of donor somatic cells with putative apoptosis inhibitors. Mol. Reprod. Dev. 68, 65–71.
| Incidence of apoptosis in clone embryos and improved development by the treatment of donor somatic cells with putative apoptosis inhibitors.Crossref | GoogleScholarGoogle Scholar |
Park, E. S., Hwang, W. S., Kang, S. K., Lee, B. C., Han, J. Y., and Lim, J. M. (2004b). Improved embryo development with decreased apoptosis in blastomeres after the treatment of cloned bovine embryos with beta-mercaptoethanol and hemoglobin. Mol. Reprod. Dev. 67, 200–206.
| Improved embryo development with decreased apoptosis in blastomeres after the treatment of cloned bovine embryos with beta-mercaptoethanol and hemoglobin.Crossref | GoogleScholarGoogle Scholar |
Petropoulos, S., Edsgard, D., Reinius, B., Deng, Q., Panula, S. P., Codeluppi, S., Reyes, A. P., Linnarsson, S., Sandberg, R., and Lanner, F. (2016). Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 167, 285.
| Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar |
Pritlove, D. C., Gu, M., Boyd, C. A. R., Randeva, H. S., and Vatish, M. (2006). Novel placental expression of 2,3-bisphosphoglycerate mutase. Placenta 27, 924–927.
| Novel placental expression of 2,3-bisphosphoglycerate mutase.Crossref | GoogleScholarGoogle Scholar |
Quinn, P., and Harlow, G. M. (1978). Effect of oxygen on development of pre-implantation mouse embryos in vitro. J. Exp. Zool. 206, 73–80.
| Effect of oxygen on development of pre-implantation mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar |
Rinaudo, P., and Schultz, R. M. (2004). Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128, 301–311.
| Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar |
Russo, R., Zucchelli, S., Codrich, M., Marcuzzi, F., Verde, C., and Gustincich, S. (2013). Hemoglobin is present as a canonical α2β2 tetramer in dopaminergic neurons. Biochim. Biophys. Acta 1834, 1939–1943.
| Hemoglobin is present as a canonical α2β2 tetramer in dopaminergic neurons.Crossref | GoogleScholarGoogle Scholar |
Straub, A. C., Lohman, A. W., Billaud, M., Johnstone, S. R., Dwyer, S. T., Lee, M. Y., Bortz, P. S., Best, A. K., Columbus, L., Gaston, B., and Isakson, B. E. (2012). Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature 491, 473–477.
| Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling.Crossref | GoogleScholarGoogle Scholar |
Takahashi, M., Keicho, K., Takahashi, H., Ogawa, H., Schultz, R. M., and Okano, A. (2000). Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology 54, 137–145.
| Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay.Crossref | GoogleScholarGoogle Scholar |
Tello, D., Balsa, E., Acosta-Iborra, B., Fuertes-Yebra, E., Elorza, A., Ordonez, A., Corral-Escariz, M., Soro, I., Lopez-Bernardo, E., Perales-Clemente, E., Martinez-Ruiz, A., Enriquez, J. A., Aragones, J., Cadenas, S., and Landazuri, M. O. (2011). Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 14, 768–779.
| Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity.Crossref | GoogleScholarGoogle Scholar |
Tervit, H. R., Whittingham, D. G., and Rowson, L. E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–497.
| Successful culture in vitro of sheep and cattle ova.Crossref | GoogleScholarGoogle Scholar |
Thompson, J. G. E., Simpson, A. C., Pugh, P. A., Donnelly, P. E., and Tervit, H. R. (1990). Effect of oxygen concentration on in vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573–578.
| Effect of oxygen concentration on in vitro development of preimplantation sheep and cattle embryos.Crossref | GoogleScholarGoogle Scholar |
Wale, P. L., and Gardner, D. K. (2010). Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online 21, 402–410.
| Time-lapse analysis of mouse embryo development in oxygen gradients.Crossref | GoogleScholarGoogle Scholar |
Wale, P. L., and Gardner, D. K. (2012). Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol. Reprod. 87, 24.
| Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development.Crossref | GoogleScholarGoogle Scholar |
Wale, P. L., and Gardner, D. K. (2016). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum. Reprod. Update 22, 2–22.
| The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction.Crossref | GoogleScholarGoogle Scholar |
Wenger, R. H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151–1162.
| Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression.Crossref | GoogleScholarGoogle Scholar |
Wride, M. A., Mansergh, F. C., Adams, S., Everitt, R., Minnema, S. E., Rancourt, D. E., and Evans, M. J. (2003). Expression profiling and gene discovery in the mouse lens. Mol. Vis. 9, 360–396.
Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., Huang, J., Li, M., Wu, X., Wen, L., Lao, K., Li, R., Qiao, J., and Tang, F. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139.
| Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |