Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Elevated non-esterified fatty acids impair survival and promote lipid accumulation and pro-inflammatory cytokine production in bovine endometrial epithelial cells

W. Chankeaw orcid.org/0000-0003-0622-0496 A B D , Y. Z. Guo A , R. Båge A , A. Svensson A , G. Andersson C and P. Humblot A
+ Author Affiliations
- Author Affiliations

A Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, SLU, P.O. Box 7054, 750 07 Uppsala, Sweden.

B Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, 133, Village No. 5, Thungyai sub-district, Thungyai district, Nakhon si thammarat, 80240, Thailand.

C Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, SLU, P.O. Box 7023, 750 07 Uppsala, Sweden.

D Corresponding author. Email: wiruntita.chankeaw@slu.se

Reproduction, Fertility and Development 30(12) 1770-1784 https://doi.org/10.1071/RD17537
Submitted: 16 December 2017  Accepted: 11 June 2018   Published: 8 August 2018

Abstract

Elevated non-esterified fatty acids (NEFAs) are associated with negative effects on bovine theca, granulosa and oviductal cells but the effects of NEFAs on bovine endometrial epithelial cells (bEECs) are not as well documented. The objective of this study was to define the effects of NEFAs on bEECs. Postprimary bEECs were treated with 150, 300 or 500 µM of either palmitic acid (PA), stearic acid (SA) or oleic acid (OA) or a mixture of NEFAs (150 µM of each FA) or 0.5% final concentration of vehicle ethanol (control). Viability and proliferation of bEECs exposed to 150 µM of each NEFA or a mixture of NEFAs were unaffected. Increased lipid accumulation was found in all treated groups (P < 0.01). In cells exposed to 500 µM of each NEFA and 300 µM PA decreased cell viability (P < 0.001), proliferation (P < 0.05) and increased apoptosis (P < 0.05) were observed. Treatment with 500 µM OA, PA and SA had the strongest effects on cell viability, proliferation and apoptosis (P < 0.05). Treatment with PA and OA increased interleukin-6 (IL-6) concentrations (P < 0.05), whereas only the highest concentration of PA, OA and SA stimulated IL-8 production (P < 0.05). These results suggest that high concentrations of NEFAs may impair endometrial function with more or less pronounced effects depending on the type of NEFA and time of exposure.

Additional keywords: apoptosis, cytokines, endometrium, proliferation.


References

Aardema, H., Vos, P. L., Lolicato, F., Roelen, B. A., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.
Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar |

Aardema, H., Lolicato, F., van de Lest, C. H. A., Brouwers, J. F., Vaandrager, A. B., van Tol, H. T. A., Roelen, B. A. J., Vos, P. L. A. M., Helms, J. B., and Gadella, B. M. (2013). Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol. Reprod. 88, 164.
Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage.Crossref | GoogleScholarGoogle Scholar |

Beloribi-Djefaflia, S., Vasseur, S., and Guillaumond, F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189.
Lipid metabolic reprogramming in cancer cells.Crossref | GoogleScholarGoogle Scholar |

Bergman, R. N., and Ader, M. (2000). Free fatty acids and pathogenesis of Type 2 diabetes mellitus. Trends Endocrinol. Metab. 11, 351–356.
Free fatty acids and pathogenesis of Type 2 diabetes mellitus.Crossref | GoogleScholarGoogle Scholar |

Bergqvist, A., Bruse, C., Carlberg, M., and Carlström, K. (2001). Interleukin 1β, interleukin-6, and tumor necrosis factor-α in endometriotic tissue and in endometrium. Fertil. Steril. 75, 489–495.
Interleukin 1β, interleukin-6, and tumor necrosis factor-α in endometriotic tissue and in endometrium.Crossref | GoogleScholarGoogle Scholar |

Browning, J. D., and Horton, J. D. (2004). Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114, 147–152.
Molecular mediators of hepatic steatosis and liver injury.Crossref | GoogleScholarGoogle Scholar |

Chanrot, M., Guo, Y., Dalin, A. M., Persson, E., Bage, R., Svensson, A., Gustafsson, H., and Humblot, P. (2017). Dose related effects of LPS on endometrial epithelial cell populations from dioestrus cows. Anim. Reprod. Sci. 177, 12–24.
Dose related effects of LPS on endometrial epithelial cell populations from dioestrus cows.Crossref | GoogleScholarGoogle Scholar |

Charpigny, G., Reinaud, P., Creminon, C., and Tamby, J. (1999). Correlation of increased concentration of ovine endometrial cyclooxygenase 2 with the increase in PGE2 and PGD2 in the late luteal phase. J. Reprod. Fertil. 117, 315–324.
Correlation of increased concentration of ovine endometrial cyclooxygenase 2 with the increase in PGE2 and PGD2 in the late luteal phase.Crossref | GoogleScholarGoogle Scholar |

Coll, T., Eyre, E., Rodríguez-Calvo, R., Palomer, X., Sánchez, R. M., Merlos, M., Laguna, J. C., and Vázquez-Carrera, M. (2008). Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J. Biol. Chem. 283, 11107–11116.
Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells.Crossref | GoogleScholarGoogle Scholar |

Cury-Boaventura, M. F., Gorjão, R., De Lima, T. M., Newsholme, P., and Curi, R. (2006). Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci. 78, 1448–1456.
Comparative toxicity of oleic and linoleic acid on human lymphocytes.Crossref | GoogleScholarGoogle Scholar |

De Bie, J., Marei, W., Maillo, V., Jordaens, L., Gutierrez-Adan, A., Bols, P., and Leroy, J. (2017). Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod. Fertil. Dev. 29, 2284–2300.

Djoković, R., Kurćubić, V., Ilić, Z., Cincović, M., Lalović, M., Jašović, B., and Bojkovski, J. (2017). Correlation between blood biochemical metabolites milk yield, dry matter intake and energy balance in dairy cows during early and mid lactation. Advances in Diabetes and Metabolism 5, 26–30.

Dubuc, J., Duffield, T., Leslie, K., Walton, J., and LeBlanc, S. (2010). Risk factors for postpartum uterine diseases in dairy cows. J. Dairy Sci. 93, 5764–5771.
Risk factors for postpartum uterine diseases in dairy cows.Crossref | GoogleScholarGoogle Scholar |

Dyntar, D., Eppenberger-Eberhardt, M., Maedler, K., Pruschy, M., Eppenberger, H. M., Spinas, G. A., and Donath, M. Y. (2001). Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50, 2105–2113.
Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes.Crossref | GoogleScholarGoogle Scholar |

El-Deeb, W. M., and El-Bahr, S. M. (2017). Biomarkers of ketosis in dairy cows at postparturient period: acute phase proteins and pro-inflammatory cytokines. Veterinarski arhiv. 87, 431–440.
Biomarkers of ketosis in dairy cows at postparturient period: acute phase proteins and pro-inflammatory cytokines.Crossref | GoogleScholarGoogle Scholar |

Farman, M., Nandi, S., Kumar, V. G., Tripathi, S., and Gupta, P. (2016). Effect of metabolic stress on ovarian activity and reproductive performance of dairy cattle: a review. Iran. J. Appl. Anim. Sci. 6, 1–7.

Galazios, G., Tsoulou, S., Zografou, C., Tripsianis, G., Koutlaki, N., Papazoglou, D., Tsikouras, P., Maltezos, E., and Liberis, V. (2011). The role of cytokines IL-6 and IL-8 in the pathogenesis of spontaneous abortions. J. Matern. Fetal Neonatal Med. 24, 1283–1285.
The role of cytokines IL-6 and IL-8 in the pathogenesis of spontaneous abortions.Crossref | GoogleScholarGoogle Scholar |

Galliano, D., and Bellver, J. (2013). Female obesity: short-and long-term consequences on the offspring. Gynecol. Endocrinol. 29, 626–631.
Female obesity: short-and long-term consequences on the offspring.Crossref | GoogleScholarGoogle Scholar |

Garris, D. R. (2004). Ultrastructural analysis of progressive endometrial hypercytolipidemia induced by obese (ob/ob) and diabetes (db/db) genotype mutations: structural basis of female reproductive tract involution. Tissue Cell 36, 19–28.
Ultrastructural analysis of progressive endometrial hypercytolipidemia induced by obese (ob/ob) and diabetes (db/db) genotype mutations: structural basis of female reproductive tract involution.Crossref | GoogleScholarGoogle Scholar |

Garris, D. R., and Garris, B. L. (2004). Cytolipotoxicity-induced involution of the female reproductive tract following expression of obese (ob/ob) and diabetes (db/db) genotype mutations: progressive, hyperlipidemic transformation into adipocytic tissues. Reprod. Toxicol. 18, 81–91.
Cytolipotoxicity-induced involution of the female reproductive tract following expression of obese (ob/ob) and diabetes (db/db) genotype mutations: progressive, hyperlipidemic transformation into adipocytic tissues.Crossref | GoogleScholarGoogle Scholar |

Håversen, L., Danielsson, K. N., Fogelstrand, L., and Wiklund, O. (2009). Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202, 382–393.
Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages.Crossref | GoogleScholarGoogle Scholar |

Henique, C., Mansouri, A., Fumey, G., Lenoir, V., Girard, J., Bouillaud, F., Prip-Buus, C., and Cohen, I. (2010). Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J. Biol. Chem. 285, 36818–36827.
Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis.Crossref | GoogleScholarGoogle Scholar |

Igoillo-Esteve, M., Marselli, L., Cunha, D. A., Ladrière, L., Ortis, F., Grieco, F. A., Dotta, F., Weir, G. C., Marchetti, P., Eizirik, D. L., and Cnop, M. (2010). Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53, 1395–1405.
Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes.Crossref | GoogleScholarGoogle Scholar |

Jensen, M. D., Haymond, M. W., Rizza, R. A., Cryer, P. E., and Miles, J. (1989). Influence of body fat distribution on free fatty acid metabolism in obesity. J. Clin. Invest. 83, 1168.
Influence of body fat distribution on free fatty acid metabolism in obesity.Crossref | GoogleScholarGoogle Scholar |

Ji, J., Zhang, L., Wang, P., Mu, Y.-M., Zhu, X.-Y., Wu, Y.-Y., Yu, H., Zhang, B., Chen, S.-M., and Sun, X.-Z. (2005). Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture. Exp. Toxicol. Pathol. 56, 369–376.
Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture.Crossref | GoogleScholarGoogle Scholar |

Jin, X.-L., Wang, K., Li, Q.-Q., Tian, W.-L., Xue, X.-F., Wu, L.-M., and Hu, F.-L. (2017). Antioxidant and anti-inflammatory effects of Chinese propolis during palmitic acid-induced lipotoxicity in cultured hepatocytes. J. Funct. Foods 34, 216–223.
Antioxidant and anti-inflammatory effects of Chinese propolis during palmitic acid-induced lipotoxicity in cultured hepatocytes.Crossref | GoogleScholarGoogle Scholar |

Jordaens, L., Arias-Alvarez, M., Pintelon, I., Thys, S., Valckx, S., Dezhkam, Y., Bols, P., and Leroy, J. (2015). Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems. Theriogenology 84, 899–910.
Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems.Crossref | GoogleScholarGoogle Scholar |

Jordaens, L., Van Hoeck, V., Vlaeminck, B., Fievez, V., Thys, S., Pintelon, I., Bols, P., and Leroy, J. (2016). In vitro monolayer barrier function of bovine oviduct epithelial cells is modified due to high concentrations of non-esterified fatty acids. In ‘Proceedings of the 30th Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Foz do Iguaçu, PR, Brazil, 25–27 August 2016, and 32nd Meeting of the European Embryo Transfer Association (AETE); Barcelona, Spain, 9–10 September 2016’. p. 649. (European Embryo Transfer Association: Barcelona.)

Jorritsma, R., Cesar, M. L., Hermans, J. T., Kruitwagen, C. L., Vos, P. L., and Kruip, T. A. (2004). Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro. Anim. Reprod. Sci. 81, 225–235.
Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro.Crossref | GoogleScholarGoogle Scholar |

Joshi‐Barve, S., Barve, S. S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M., Hote, P., and McClain, C. J. (2007). Palmitic acid induces production of proinflammatory cytokine interleukin‐8 from hepatocytes. Hepatology 46, 823–830.
Palmitic acid induces production of proinflammatory cytokine interleukin‐8 from hepatocytes.Crossref | GoogleScholarGoogle Scholar |

Khandoker, M. A. M. Y., Tsujii, H., and Karasawa, D. (1997). Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow. Asian-Australas. J. Anim. Sci. 10, 523–527.
Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow.Crossref | GoogleScholarGoogle Scholar |

Kinkel, A. D., Fernyhough, M. E., Helterline, D. L., Vierck, J. L., Oberg, K. S., Vance, T. J., Hausman, G. J., Hill, R. A., and Dodson, M. V. (2004). Oil red-O stains non-adipogenic cells: a precautionary note. Cytotechnology 46, 49–56.
Oil red-O stains non-adipogenic cells: a precautionary note.Crossref | GoogleScholarGoogle Scholar |

LeBlanc, S. J. (2012). Interactions of metabolism, inflammation, and reproductive tract health in the postpartum period in dairy cattle. Reprod. Domest. Anim. 47, 18–30.
Interactions of metabolism, inflammation, and reproductive tract health in the postpartum period in dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Leroy, J. L. M. R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar |

Lima, T. M., Kanunfre, C. C., Pompéia, C., Verlengia, R., and Curi, R. (2002). Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol. In Vitro 16, 741–747.
Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis.Crossref | GoogleScholarGoogle Scholar |

Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese, R. V., Ory, D. S., and Schaffer, J. E. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 100, 3077–3082.
Triglyceride accumulation protects against fatty acid-induced lipotoxicity.Crossref | GoogleScholarGoogle Scholar |

Lonza (2011). Oil red o stain for in vitro adipogenesis. Available at https://lonza.picturepark.com/Website/?Action=downloadAsset&AssetId=28564 [Verified 5 July 2018]

Loyi, T., Kumar, H., Nandi, S., Mathapati, B. S., Patra, M. K., and Pattnaik, B. (2013). Differential expression of pro-inflammatory cytokines in endometrial tissue of buffaloes with clinical and sub-clinical endometritis. Res. Vet. Sci. 94, 336–340.
Differential expression of pro-inflammatory cytokines in endometrial tissue of buffaloes with clinical and sub-clinical endometritis.Crossref | GoogleScholarGoogle Scholar |

Lu, Z.-H., Mu, Y.-M., Wang, B.-A., Li, X.-L., Lu, J.-M., Li, J.-Y., Pan, C.-Y., Yanase, T., and Nawata, H. (2003). Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem. Biophys. Res. Commun. 303, 1002–1007.
Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell.Crossref | GoogleScholarGoogle Scholar |

Martin, A. D., Afseth, N. K., Kohler, A., Randby, Å., Eknæs, M., Waldmann, A., Dørum, G., Måge, I., and Reksen, O. (2015). The relationship between fatty acid profiles in milk identified by Fourier transform infrared spectroscopy and onset of luteal activity in Norwegian dairy cattle. J. Dairy Sci. 98, 5374–5384.
The relationship between fatty acid profiles in milk identified by Fourier transform infrared spectroscopy and onset of luteal activity in Norwegian dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Martins de Lima, T., Cury-Boaventura, M. F., Giannocco, G., Nunes, M. T., and Curi, R. (2006). Comparative toxicity of fatty acids on a macrophage cell line (J774). Clin. Sci. 111, 307–317.
Comparative toxicity of fatty acids on a macrophage cell line (J774).Crossref | GoogleScholarGoogle Scholar |

McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.

Mellouk, N., Rame, C., Touzé, J.-L., Briant, E., Ma, L., Guillaume, D., Lomet, D., Caraty, A., Ntallaris, T., and Humblot, P. (2017). Involvement of plasma adipokines in metabolic and reproductive parameters in Holstein dairy cows fed with diets with differing energy levels. J. Dairy Sci. 100, 8518–8533.
Involvement of plasma adipokines in metabolic and reproductive parameters in Holstein dairy cows fed with diets with differing energy levels.Crossref | GoogleScholarGoogle Scholar |

Mu, Y.-M., Yanase, T., Nishi, Y., Tanaka, A., Saito, M., Jin, C.-H., Mukasa, C., Okabe, T., Nomura, M., and Goto, K. (2001). Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142, 3590–3597.
Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells.Crossref | GoogleScholarGoogle Scholar |

Nandi, S., Tripathi, S., Gupta, P., and Mondal, S. (2017). Effect of metabolic stressors on survival and growth of in vitro cultured ovine preantral follicles and enclosed oocytes. Theriogenology 104, 80–86.
Effect of metabolic stressors on survival and growth of in vitro cultured ovine preantral follicles and enclosed oocytes.Crossref | GoogleScholarGoogle Scholar |

Ntallaris, T., Humblot, P., Båge, R., Sjunnesson, Y., Dupont, J., and Berglund, B. (2017). Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows. Theriogenology 90, 276–283.
Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows.Crossref | GoogleScholarGoogle Scholar |

Ohtsu, A., Tanaka, H., Seno, K., Iwata, H., Kuwayama, T., and Shirasuna, K. (2017). Palmitic acid stimulates interleukin-8 via the TLR4/NF-κB/ROS pathway and induces mitochondrial dysfunction in bovine oviduct epithelial cells. Am. J. Reprod. Immunol. 77, e12642.
Palmitic acid stimulates interleukin-8 via the TLR4/NF-κB/ROS pathway and induces mitochondrial dysfunction in bovine oviduct epithelial cells.Crossref | GoogleScholarGoogle Scholar |

Ospina, P. A., Nydam, D. V., Stokol, T., and Overton, T. R. (2010). Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J. Dairy Sci. 93, 1596–1603.
Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States.Crossref | GoogleScholarGoogle Scholar |

Paczkowski, M., Schoolcraft, W. B., and Krisher, R. L. (2014). Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 148, 429–439.
Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence.Crossref | GoogleScholarGoogle Scholar |

Pownall, H. J. (2001). Cellular transport of nonesterified fatty acids. J. Mol. Neurosci. 16, 109–115.
Cellular transport of nonesterified fatty acids.Crossref | GoogleScholarGoogle Scholar |

Prins, J. R., Gomez-Lopez, N., and Robertson, S. A. (2012). Interleukin-6 in pregnancy and gestational disorders. J. Reprod. Immunol. 95, 1–14.
Interleukin-6 in pregnancy and gestational disorders.Crossref | GoogleScholarGoogle Scholar |

Ramírez-Zacarías, J. L., Castro-Muñozledo, F., and Kuri-Harcuch, W. (1992). Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 97, 493–497.
Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O.Crossref | GoogleScholarGoogle Scholar |

Reardon, M., Gobern, S., Martinez, K., Shen, W., Reid, T., and McIntosh, M. (2012). Oleic acid attenuates trans-10,cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes. Lipids 47, 1043–1051.
Oleic acid attenuates trans-10,cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes.Crossref | GoogleScholarGoogle Scholar |

Ricchi, M., Odoardi, M. R., Carulli, L., Anzivino, C., Ballestri, S., Pinetti, A., Fantoni, L. I., Marra, F., Bertolotti, M., and Banni, S. (2009). Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 24, 830–840.
Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes.Crossref | GoogleScholarGoogle Scholar |

Rukkwamsuk, T., Geelen, M., Kruip, T., and Wensing, T. (2000). Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 83, 52–59.
Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum.Crossref | GoogleScholarGoogle Scholar |

Schaffer, J. E. (2003). Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol. 14, 281–287.
Lipotoxicity: when tissues overeat.Crossref | GoogleScholarGoogle Scholar |

Shankar, K., Zhong, Y., Kang, P., Lau, F., Blackburn, M. L., Chen, J.-R., Borengasser, S. J., Ronis, M. J., and Badger, T. M. (2011). Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology 152, 4158–4170.
Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst.Crossref | GoogleScholarGoogle Scholar |

Stoop, W. M., Bovenhuis, H., Heck, J. M. L., and van Arendonk, J. A. M. (2009). Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 92, 1469–1478.
Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows.Crossref | GoogleScholarGoogle Scholar |

Swangchan-Uthai, T., Chen, Q. S., Kirton, S. E., Fenwick, M. A., Cheng, Z. R., Patton, J., Fouladi-Nashta, A. A., and Wathes, D. C. (2013). Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow. Reproduction 145, 527–539.
Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow.Crossref | GoogleScholarGoogle Scholar |

Talati, M. H., Brittain, E. L., Fessel, J. P., Penner, N., Atkinson, J., Funke, M., Grueter, C., Jerome, W. G., Freeman, M., Newman, J. H., West, J., and Hemnes, A. R. (2016). Mechanisms of lipid accumulation in the bone morphogenetic protein receptor Type 2 mutant right ventricle. Am. J. Respir. Crit. Care Med. 194, 719–728.
Mechanisms of lipid accumulation in the bone morphogenetic protein receptor Type 2 mutant right ventricle.Crossref | GoogleScholarGoogle Scholar |

Tamminga, S., Luteijn, P., and Meijer, R. (1997). Changes in composition and energy content of liveweight loss in dairy cows with time after parturition. Livest. Prod. Sci. 52, 31–38.
Changes in composition and energy content of liveweight loss in dairy cows with time after parturition.Crossref | GoogleScholarGoogle Scholar |

Valckx, S. D. M., Van Hoeck, V., Arias-Alvarez, M., Maillo, V., Lopez-Cardona, A. P., Gutierrez-Adan, A., Berth, M., Cortvrindt, R., Bols, P. E. J., and Leroy, J. L. M. R. (2014). Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. Fertil. Steril. 102, 1769–1776.
Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar |

van Herpen, N. A., and Schrauwen-Hinderling, V. B. (2008). Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav. 94, 231–241.
Lipid accumulation in non-adipose tissue and lipotoxicity.Crossref | GoogleScholarGoogle Scholar |

Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E. J., and Leroy, J. L. M. R. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6, e23183.
Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar |

Vanholder, T., Leroy, J., Van Soom, A., Opsomer, G., Maes, D., Coryn, M., and de Kruif, A. (2005). Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim. Reprod. Sci. 87, 33–44.
Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro.Crossref | GoogleScholarGoogle Scholar |

Vanholder, T., Lmr Leroy, J., Van Soom, A., Maes, D., Coryn, M., Fiers, T., de Kruif, A., and Opsomer, G. (2006). Effect of non-esterified fatty acids on bovine theca cell steroidogenesis and proliferation in vitro. Anim. Reprod. Sci. 92, 51–63.
Effect of non-esterified fatty acids on bovine theca cell steroidogenesis and proliferation in vitro.Crossref | GoogleScholarGoogle Scholar |

Vidyashankar, S., Sandeep Varma, R., and Patki, P. S. (2013). Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol. In Vitro 27, 945–953.
Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.Crossref | GoogleScholarGoogle Scholar |

Wathes, D. C., Cheng, Z. R., Chowdhury, W., Fenwick, M. A., Fitzpatrick, R., Morris, D. G., Patton, J., and Murphy, J. J. (2009). Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiol. Genomics 39, 1–13.
Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows.Crossref | GoogleScholarGoogle Scholar |

Wathes, D. C., Clempson, A. M., and Pollott, G. E. (2013). Associations between lipid metabolism and fertility in the dairy cow. Reprod. Fertil. Dev. 25, 48–61.
Associations between lipid metabolism and fertility in the dairy cow.Crossref | GoogleScholarGoogle Scholar |

Weigert, C., Brodbeck, K., Staiger, H., Kausch, C., Machicao, F., Häring, H. U., and Schleicher, E. D. (2004). Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-κB. J. Biol. Chem. 279, 23942–23952.
Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-κB.Crossref | GoogleScholarGoogle Scholar |

Yan, P., Tang, S., Zhang, H., Guo, Y., Zeng, Z., and Wen, Q. (2017). Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway. Metab. Brain Dis. 32, 453–460.
Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway.Crossref | GoogleScholarGoogle Scholar |

Yang, X., Haghiac, M., Glazebrook, P., Minium, J., Catalano, P. M., and Hauguel-de Mouzon, S. (2015). Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts. Hum. Reprod. 30, 2152–2159.
Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts.Crossref | GoogleScholarGoogle Scholar |

Zarmakoupis, P. N., Rier, S. E., Maroulis, G. B., and Becker, J. L. (1995). Uterus and endometrium: inhibition of human endometrial stromal cell proliferation by interleukin 6. Hum. Reprod. 10, 2395–2399.
Uterus and endometrium: inhibition of human endometrial stromal cell proliferation by interleukin 6.Crossref | GoogleScholarGoogle Scholar |

Zhang, L., Rees, M., and Bicknell, R. (1995). The isolation and long-term culture of normal human endometrial epithelium and stroma. Expression of mRNAs for angiogenic polypeptides basally and on oestrogen and progesterone challenges. J. Cell Sci. 108, 323–331.

Zhang, Y., Xue, R., Zhang, Z., Yang, X., and Shi, H. (2012). Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis. 11, 1.
Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells.Crossref | GoogleScholarGoogle Scholar |

Zhou, B.-r., Zhang, J.-a., Zhang, Q., Permatasari, F., Xu, Y., Wu, D., Yin, Z.-q., and Luo, D. (2013). Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes. Mediators Inflamm. 2013, 530429.
Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes.Crossref | GoogleScholarGoogle Scholar |