Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Antioxidant β-cryptoxanthin enhances porcine oocyte maturation and subsequent embryo development in vitro

Yun-Gwi Park A B , Seung-Eun Lee A B , Yeo-Jin Son A B , Sang-Gi Jeong A B , Min-Young Shin A B , Won-Jae Kim A B , Eun-Young Kim A B C D and Se-Pill Park A B C D
+ Author Affiliations
- Author Affiliations

A Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, Korea.

B Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, Korea.

C Mirae Cell Bio, 288 Achasan-ro, Gwangjin-gu, Seoul, 05066, Korea.

D Corresponding authors. Emails: sppark@jejunu.ac.kr; jlokey@daum.net

Reproduction, Fertility and Development 30(9) 1204-1213 https://doi.org/10.1071/RD17444
Submitted: 24 October 2017  Accepted: 16 February 2018   Published: 23 March 2018

Abstract

Oxidative stress is partly responsible for the poor quality of IVM oocytes. The present study investigated the effects of the antioxidant β-cryptoxanthin on the IVM of porcine oocytes and the in vitro development of the ensuing embryos. Oocytes were matured in IVM medium containing different concentrations of β-cryptoxanthin (0, 0.1, 1, 10 or 100 μM). Treatment with 1 µM β-cryptoxanthin (Group 1B) improved polar body extrusion and the expression of maturation-related genes in cumulus cells and oocytes compared with control. In addition, levels of reactive oxygen species decreased significantly in Group 1B, whereas there were significant increases in glutathione levels and expression of the antioxidant genes superoxide dismutase 1 and peroxiredoxin 5 in this group. After parthenogenetic activation, although the cleavage rate did not differ between the control and 1B groups, the blastocyst formation rate was higher in the latter. Moreover, the total number of cells per blastocyst and relative mRNA levels of pluripotency marker and antioxidant genes were significantly higher in the 1B compared with control group. These results demonstrate that β-cryptoxanthin decreases oxidative stress in porcine oocytes and improves their quality and developmental potential.

Additional keywords: IVM, oxidative stress.


References

Agung, B., Piao, Y., Fuchimoto, D., Senbon, S., Onishi, A., Otoi, T., and Nagai, T. (2010). Effects of oxygen tension and follicle cells on maturation and fertilization of porcine oocytes during in vitro culture in follicular fluid. Theriogenology 73, 893–899.
Effects of oxygen tension and follicle cells on maturation and fertilization of porcine oocytes during in vitro culture in follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1als7o%3D&md5=e10bfdd13bfea90b01ef16adb6168cceCAS |

Alvarez, G. M., Morado, S. A., Soto, M. P., Dalvit, G. C., and Cetica, P. D. (2015). The control of reactive oxygen species influences porcine oocyte in vitro maturation. Reprod. Domest. Anim. 50, 200–205.
The control of reactive oxygen species influences porcine oocyte in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktVemt78%3D&md5=77f9646824428ad1a51102625e5889deCAS |

Balboula, A. Z., Yamanaka, K., Sakatani, M., Kawahara, M., Hegab, A. O., Zaabel, S. M., and Takahashi, M. (2013). Cathepsin B activity has a crucial role in the developmental competence of bovine cumulus–oocyte complexes exposed to heat shock during in vitro maturation. Reproduction 146, 407–417.
Cathepsin B activity has a crucial role in the developmental competence of bovine cumulus–oocyte complexes exposed to heat shock during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygtrrM&md5=52977e2ac969a17d4ca2df9a3dc7998cCAS |

Belhadj Slimen, I., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., and Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperthermia 30, 513–523.
Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGls77E&md5=64f5376b60017b7394e3d1bfb527555fCAS |

Boerjan, M. L., and de Boer, P. (1990). First cell cycle of zygotes of the mouse derived from oocytes aged postovulation in vivo and fertilized in vivo. Mol. Reprod. Dev. 25, 155–163.
First cell cycle of zygotes of the mouse derived from oocytes aged postovulation in vivo and fertilized in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslantLY%3D&md5=c6a48048290b705ab8fc878ac349f1f8CAS |

Choi, J. Y., Kang, J. T., Park, S. J., Kim, S. J., Moon, J. H., Saadeldin, I. M., Jang, G., and Lee, B. C. (2013). Effect of 7,8-dihyroxyflavone as an antioxidant on in vitro maturation of oocytes and development of parthenogenetic embryos in pigs. J. Reprod. Dev. 59, 450–456.
Effect of 7,8-dihyroxyflavone as an antioxidant on in vitro maturation of oocytes and development of parthenogenetic embryos in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVClsr%2FN&md5=675ebaa8146e003f2fa512e25a6221abCAS |

Downs, S. M., Daniel, S. A., Bornslaeger, E. A., Hoppe, P. C., and Eppig, J. J. (1989). Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity. Gamete Res. 23, 323–334.
Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlWmtL0%3D&md5=22f83cac888c291b599618e9da52ddfaCAS |

Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–838.
Oocyte control of ovarian follicular development and function in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjsw%3D%3D&md5=d45b7a8c2c171fe9abc62658390e227bCAS |

Eykelbosh, A. J., and Van Der Kraak, G. (2010). A role for the lysosomal protease cathepsin B in zebrafish follicular apoptosis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 156, 218–223.
A role for the lysosomal protease cathepsin B in zebrafish follicular apoptosis.Crossref | GoogleScholarGoogle Scholar |

Fakruzzaman, M., Ghanem, N., Bang, J. I., Ha, A. N., Lee, K. L., Sohn, S. H., Wang, Z., Lee, D. S., and Kong, I. K. (2015). Effect of peroxiredoxin II on the quality and mitochondrial activity of pre-implantation bovine embryos. Anim. Reprod. Sci. 159, 172–183.
Effect of peroxiredoxin II on the quality and mitochondrial activity of pre-implantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWgsbrE&md5=0da6ea1e301938428fb50327a39e8281CAS |

Fu, H. F., Xie, B. J., Fan, G., Ma, S. J., Zhu, X. R., and Pan, S. Y. (2010). Effect of esterification with fatty acid of β-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem. 122, 602–609.
Effect of esterification with fatty acid of β-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCns74%3D&md5=10d3f3fbb52017d5d184770262a00ea2CAS |

Fülöp, C., Salustri, A., and Hascall, V. C. (1997). Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus–oocyte complex. Arch. Biochem. Biophys. 337, 261–266.
Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus–oocyte complex.Crossref | GoogleScholarGoogle Scholar |

Gallicchio, L., Boyd, K., Matanoski, G., Tao, X. G., Chen, L., Lam, T. K., Shiels, M., Hammond, E., Robinson, K. A., Caulfield, L. E., Herman, J. G., Guallar, E., and Alberg, A. J. (2008). Carotenoids and the risk of developing lung cancer: a systematic review. Am. J. Clin. Nutr. 88, 372–383.
Carotenoids and the risk of developing lung cancer: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWnu7vO&md5=f805877184b92975d40dd3af839676e6CAS |

Gao, C., Han, H. B., Tian, X. Z., Tan, D. X., Wang, L., Zhou, G. B., Zhu, S. E., and Liu, G. S. (2012). Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Res. 52, 305–311.
Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFylt7c%3D&md5=932747d7cb0b5f68541dca24e286daa1CAS |

Goto, Y., Noda, Y., Mori, Y., and Nakano, M. (1993). Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15, 69–75.
Increased generation of reactive oxygen species in embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFOnsL8%3D&md5=611a636940cd71a8ff9ab135b0ffa399CAS |

Guérin, P., El Mouatassim, S., and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar |

Hashimoto, S., Minami, N., Takakura, R., Yamada, M., Imai, H., and Kashima, N. (2000). Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol. Reprod. Dev. 57, 353–360.
Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFaiurc%3D&md5=58aaf0a733b0c1e6401c1810b6377e27CAS |

Heikinheimo, O., and Gibbons, W. E. (1998). The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Mol. Hum. Reprod. 4, 745–756.
The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFWksbs%3D&md5=6b6a6071e3cd7f46f649d5053a6ed59cCAS |

Hirashima, Y., Kobayashi, H., Gotoh, J., and Terao, T. (1997). Inter-alpha-trypsin inhibitor is concentrated in the pericellular environment of mouse granulosa cells through hyaluronan-binding. Eur. J. Obstet. Gynecol. Reprod. Biol. 73, 79–84.
Inter-alpha-trypsin inhibitor is concentrated in the pericellular environment of mouse granulosa cells through hyaluronan-binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslemt7g%3D&md5=31c21f326a8f4bbde22b9aa08d5df49aCAS |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=29ddfd7e52438019f087423728417500CAS |

Itano, N., Sawai, T., Yoshida, M., Lenas, P., Yamada, Y., Imagawa, M., Shinomura, T., Hamaguchi, M., Yoshida, Y., Ohnuki, Y., Miyauchi, S., Spicer, A. P., McDonald, J. A., and Kimata, K. (1999). Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274, 25085–25092.
Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1ymur8%3D&md5=ed1f2d812e637e9ccd1e33a1b5f93ea6CAS |

Kang, J. T., Koo, O. J., Kwon, D. K., Park, H. J., Jang, G., Kang, S. K., and Lee, B. C. (2009). Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J. Pineal Res. 46, 22–28.
Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsV2rtQ%3D%3D&md5=b0281949fd39572c818c0ea7ca2de6acCAS |

Kang, J. T., Kwon, D. K., Park, S. J., Kim, S. J., Moon, J. H., Koo, O. J., Jang, G., and Lee, B. C. (2013). Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. J. Vet. Sci. 14, 15–20.
Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels.Crossref | GoogleScholarGoogle Scholar |

Katsuura, S., Imamura, T., Bando, N., and Yamanishi, R. (2009). beta-Carotene and beta-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol. Nutr. Food Res. 53, 1396–1405.
beta-Carotene and beta-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyqu7rJ&md5=5f7de9cd91bc48695f21df0ee2aaae22CAS |

Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomelí, H., Nagy, A., McLaughlin, K. J., Schöler, H. R., and Tomilin, A. (2004). Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083.
Oct4 is required for primordial germ cell survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFems7w%3D&md5=3afd71e3d417d56d5660efaa7a5e9836CAS |

Kim, E., Jeon, Y., Kim, D. Y., Lee, E., and Hyun, S. H. (2015). Antioxidantive effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF. Theriogenology 84, 226–236.
Antioxidantive effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVSrs7c%3D&md5=0c3661d0bc02115d2eee44ea4a1d3e6cCAS |

Kobayashi, M., Lee, E. S., and Fukui, Y. (2006). Cysteamine or beta-mercaptoethanol added to a defined maturation medium improves blastocyst formation of porcine oocytes after intracytoplasmic sperm injection. Theriogenology 65, 1191–1199.
Cysteamine or beta-mercaptoethanol added to a defined maturation medium improves blastocyst formation of porcine oocytes after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKjsr0%3D&md5=4280dc7a035a4122bc92a0091d6edad2CAS |

Koressaar, T., and Remm, M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291.
Enhancements and modifications of primer design program Primer3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOjur0%3D&md5=5b4a22b7e61d6816e1f47cdb1ba1e1a7CAS |

Lee, S. E., Moon, J. J., Kim, E. Y., and Park, S. P. (2015). Stem cell derived bioactive materials accelerate development of porcine in vitro fertilized embryos. Cell. Reprogram. 17, 181–190.
Stem cell derived bioactive materials accelerate development of porcine in vitro fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXps1CgtLk%3D&md5=c8fbf73c6438616c38c10cb2e6323296CAS |

Marques, M. G., de Barros, F. R., Goissis, M. D., Cavalcanti, P. V., Viana, C. H., Assumpco, M. E., and Visintin, J. A. (2012). Effect of low oxygen tension atmosphere and maturation media supplementation on nuclear maturation, cortical granules migration and sperm penetration in swine in vitro fertilization. Reprod. Domest. Anim. 47, 491–497.
Effect of low oxygen tension atmosphere and maturation media supplementation on nuclear maturation, cortical granules migration and sperm penetration in swine in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVKmtbk%3D&md5=d52c2ff01a06f175f1246352088bf25dCAS |

Matsumoto, A., Mizukami, H., Mizuno, S., Umeqaki, K., Nishikawa, J., Shudo, K., Kagechika, H., and Inoue, M. (2007). beta-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem. Pharmacol. 74, 256–264.
beta-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFKgtLw%3D&md5=97302ee0f0e37e42fc9bd5020bfd319cCAS |

Miao, L., and St Clair, D. K. (2009). Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med. 47, 344–356.
Regulation of superoxide dismutase genes: implications in disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2lsb0%3D&md5=a42d18ff307266c1e68f891934936995CAS |

Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., and Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 384, 240–242.
Antioxidant activities of carotenes and xanthophylls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivV2muro%3D&md5=1385381ce15f470e3ecb0133aded4f1fCAS |

Murakami, A., Nakashima, M., Koshiba, T., Maoka, T., Nishino, H., Yano, M., Sumida, T., Kim, O. K., Koshimizu, K., and Ohigashi, H. (2000). Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Lett. 149, 115–123.
Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1OjtLw%3D&md5=9058198cf0d7491bb37a29fb71bcd491CAS |

Nasr-Esfahani, M. H., Aitken, J. R., and Johnson, M. H. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109, 501–507.
| 1:CAS:528:DyaK3cXlsV2nsbo%3D&md5=32c80110e5476fcbbcc708f8d1962711CAS |

Ogawa, B., Ueno, S., Nakayama, N., Matsunari, H., Nakano, K., Fujiwara, T., Ikezawa, Y., and Nagashima, H. (2010). Developmental ability of porcine in vitro matured oocytes at the meiosis II stage after vitrification. J. Reprod. Dev. 56, 356–361.
Developmental ability of porcine in vitro matured oocytes at the meiosis II stage after vitrification.Crossref | GoogleScholarGoogle Scholar |

Oskarsson, M., McClements, W. L., Blair, D. G., Maizel, J. V., and Vande Woude, G. F. (1980). Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma vitrus. Science 207, 1222–1224.
Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma vitrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhslGqtL0%3D&md5=687eb789e108960c763ac99a737d4ff0CAS |

Pesce, M., and Schöler, H. R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271–278.
Oct-4: gatekeeper in the beginnings of mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFKktL4%3D&md5=9031d135c47e1a4407d2763eef97b3dbCAS |

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.
| 1:CAS:528:DyaK1MXmslKqsbo%3D&md5=8d837e8daddbb05b8867d6dbfb7938d0CAS |

Russell, D. L., and Salustri, A. (2006). Extracellular matrix of the cumulus–oocyte complex. Semin. Reprod. Med. 24, 217–227.
Extracellular matrix of the cumulus–oocyte complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2jsr3J&md5=95040ccf5a153de9040ca7d7d2fa73deCAS |

Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D., and Vande Woude, G. F. (1989). The product of the mos proto-oncogene as a candidate ‘initiator’ for oocyte maturation. Science 245, 643–646.
The product of the mos proto-oncogene as a candidate ‘initiator’ for oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlt1yisbc%3D&md5=8e82932915c13b07e4e65ed6412df29aCAS |

Setti, A. S., Figueira, R. C., Braga, D. P., Colturato, S. S., Laconelli, A., and Borges, E. (2011). Relationship between oocyte abnormal morphology and intracytoplamic sperm injection outcomes: a meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 159, 364–370.
Relationship between oocyte abnormal morphology and intracytoplamic sperm injection outcomes: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Shi, S., Grothe, S., Zhang, Y., O’Connor-McCourt, M. D., Poole, A. R., Roughley, P. J., and Mort, J. S. (2004). Link protein has greater affinity for versican than aggrecan. J. Biol. Chem. 279, 12060–12066.
Link protein has greater affinity for versican than aggrecan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitl2htbY%3D&md5=0df11d927cf502b38e1ed813247c4a85CAS |

Son, Y. J., Lee, S. E., Hyun, H., Shin, M. Y., Park, Y. G., Jeong, S. G., Kim, E. Y., and Park, S. P. (2017). Fibroblast growth factor 10 markedly improves in vitro maturation of porcine cumulus–oocyte complexes. Mol. Reprod. Dev. 84, 67–75.
Fibroblast growth factor 10 markedly improves in vitro maturation of porcine cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXoslaqtA%3D%3D&md5=73ff5bc0a9109b8464a02fe852e06cfeCAS |

Strumpf, D., Mao, C. A., Yamanaka, Y., Ralston, A., Chawengsaksophak, K., Beck, F., and Rossant, J. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102.
Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFagsbs%3D&md5=578689d643c7f385f7dc40a0ae259a5cCAS |

Sun, G. W., Kobayashi, H., and Terao, T. (1999). Expression of link protein during mouse follicular development. J. Histochem. Cytochem. 47, 1433–1442.
Expression of link protein during mouse follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlyktbs%3D&md5=1d366b31100c8df3751ba95019ece31cCAS |

Suzuki, C., and Yoshioka, K. (2006). Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium. Reprod. Fertil. Dev. 18, 789–795.
Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFWlu74%3D&md5=80bbe3962059d96f8faeed88604da898CAS |

Trumbo, P., Yates, A. A., Schlicker, S., and Poos, M. (2001). Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101, 294–301.
Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7mvVCksw%3D%3D&md5=a34c417901796f310a386a678396e900CAS |

Tsang, C. K., Liu, Y., Thomas, J., Zhang, Y., and Zheng, X. F. (2014). Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 5, 3446.
Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance.Crossref | GoogleScholarGoogle Scholar |

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., and Remm, M. (2012). Primer3 – new capabilities and interfaces. Nucleic Acid Res. 40, e115.
Primer3 – new capabilities and interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kjs7nF&md5=17d866e2fd57cccea9e51afb49c45ce4CAS |

Vancompernolle, K., Herreweghe, F. V., Pynaert, G., Craen, M. V. D., Vos, K. D., Totty, N., Sterling, A., Fiers, W., Vandenabeele, P., and Grooten, J. (1998). Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett. 438, 150–158.
Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFOmsbY%3D&md5=8b124ab24ac71e97af1c3622d9392137CAS |

Verdoucq, L., Viqnols, F., Jacquot, J. P., Chartier, Y., and Meyer, Y. (1999). In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J. Biol. Chem. 274, 19714–19722.
In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFKmtL0%3D&md5=1cbc1c167d2e94316fe2670fea64d378CAS |

Wood, Z. A., Schröder, E., Robin Harris, J., and Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40.
Structure, mechanism and regulation of peroxiredoxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFGh&md5=c90f5268b6794682d6ef74cb8c6013f7CAS |

Yamanaka, Y., Ralston, A., Stephenson, R. O., and Rossant, J. (2006). Cell and molecular regulation of mouse blastocyst. Dev. Dyn. 235, 2301–2314.
Cell and molecular regulation of mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSku7bL&md5=1308f6f68cde395d411e7fe859453e69CAS |

Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=c730796c72f01b01a7058636db317588CAS |

You, J., Kim, J., Lim, J., and Lee, E. (2010). Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 74, 777–785.
Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtbjJ&md5=57641a35e3ff55e109fb21b9335c3e48CAS |

Zhang, D. X., Park, W. J., Sun, S. C., Xu, Y. N., Li, Y. H., Cui, X. S., and Kim, N. H. (2011). Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J. Reprod. Dev. 57, 49–56.
Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Cgu7o%3D&md5=4e5aa8a7fd9c1b8d51d5eb5bacf324edCAS |

Zhou, Y., Kok, K. H., Chun, A. C., Wong, C. M., Wu, H. W., Lin, M. C., Fung, P. C., Kung, H., and Jin, D. Y. (2000). Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem. Biophys. Res. Commun. 268, 921–927.
Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFGisbs%3D&md5=9d8941f16c01c3be1c7ea141accd7ffaCAS |

Zhou, P., Wu, Y. G., Li, Q., Lan, G. C., Wang, G., Gao, D., and Tan, J. H. (2008). The interactions between cysteamine, cysteine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction 135, 605–611.
The interactions between cysteamine, cysteine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wqtbk%3D&md5=79711d3359d01548887f0f66fa3e1b72CAS |

Zuccotti, M., Merico, V., Sacchi, L., Bellone, M., Brink, T. C., Bellazzi, R., Stefanelli, M., Redi, C. A., Garagna, S., and Adjaye, J. (2008). Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes. BMC Dev. Biol. 8, 97.
Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes.Crossref | GoogleScholarGoogle Scholar |