Anti-Müllerian hormone receptor type 2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion
Onalenna Kereilwe A , Kiran Pandey A , Vitaliano Borromeo B and Hiroya Kadokawa A CA Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.
B Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900, Italy.
C Corresponding author. Email: hiroya@yamaguchi-u.ac.jp
Reproduction, Fertility and Development 30(9) 1192-1203 https://doi.org/10.1071/RD17377
Submitted: 20 September 2017 Accepted: 14 February 2018 Published: 14 March 2018
Abstract
Preantral and small antral follicles may secret anti-Müllerian hormone (AMH) to control gonadotrophin secretion from ruminant gonadotrophs. The present study investigated whether the main receptor for AMH, AMH receptor type 2 (AMHR2), is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion. Expression of AMHR2 mRNA was detected in anterior pituitaries (APs) of postpubertal heifers using reverse transcription–polymerase chain reaction. An anti-AMHR2 chicken antibody was developed against the extracellular region near the N-terminus of bovine AMHR2. Western blotting using this antibody detected the expression of AMHR2 protein in APs. Immunofluorescence microscopy using the same antibody visualised colocalisation of AMHR2 with gonadotrophin-releasing hormone (GnRH) receptor on the plasma membrane of gonadotrophs. AP cells were cultured for 3.5 days and then treated with increasing concentrations (0, 1, 10, 100, or 1000 pg mL−1) of AMH. AMH (10–1000 pg mL−1) stimulated (P < 0.05) basal FSH secretion. In addition, AMH (100–1000 pg mL−1) weakly stimulated (P < 0.05) basal LH secretion. AMH (100–1000 pg mL−1) inhibited GnRH-induced FSH secretion, but not GnRH-induced LH secretion, in AP cells. In conclusion, AMHR2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion.
Additional keywords: AMHR2, gonadotrophin-releasing hormone (GnRH) receptor, Müllerian-inhibiting substance, ruminant.
References
Bédécarrats, G. Y., O’Neill, F. H., Norwitz, E. R., Kaiser, U. B., and Teixeira, J. (2003). Regulation of gonadotropin gene expression by Mullerian inhibiting substance. Proc. Natl Acad. Sci. USA 100, 9348–9353.| Regulation of gonadotropin gene expression by Mullerian inhibiting substance.Crossref | GoogleScholarGoogle Scholar |
Belville, C., Van Vlijmen, H., Ehrenfels, C., Pepinsky, B., Rezaie, A. R., Picard, J. Y., Josso, N., di Clemente, N., and Cate, R. L. (2004). Mutations of the anti-Mullerian hormone gene in patients with persistent Mullerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three-dimensional model. Mol. Endocrinol. 18, 708–721.
| Mutations of the anti-Mullerian hormone gene in patients with persistent Mullerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three-dimensional model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFCqt78%3D&md5=72a7d8190079c8fe83b6c9afd316355fCAS |
Bhide, P., and Homburg, R. (2016). Anti-Müllerian hormone and polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 37, 38–45.
| Anti-Müllerian hormone and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |
Borromeo, V., Amsterdam, A., Berrini, A., Gaggioli, D., Dantes, A., and Secchi, C. (2004). Characterization of biologically active bovine pituitary FSH purified by immunoaffinity chromatography using a monoclonal antibody. Gen. Comp. Endocrinol. 139, 179–189.
| Characterization of biologically active bovine pituitary FSH purified by immunoaffinity chromatography using a monoclonal antibody.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKktr4%3D&md5=d9ed43f8bcf00ebc8d6f0f44fb1cfce0CAS |
Campbell, B. K., Clinton, M., and Webb, R. (2012). The role of anti-Mullerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology 153, 4533–4543.
| The role of anti-Mullerian hormone (AMH) during follicle development in a monovulatory species (sheep).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlagtb%2FJ&md5=45726d2eed6a987430163763d28b8ae1CAS |
Dewailly, D., Andersen, C. Y., Balen, A., Broekmans, F., Dilaver, N., Fanchin, R., Griesinger, G., Kelsey, T. W., La Marca, A., Lambalk, C., Mason, H., Nelson, S. M., Visser, J. A., Wallace, W. H., and Anderson, R. A. (2014). The physiology and clinical utility of anti-Mullerian hormone in women. Hum. Reprod. Update 20, 370–385.
| The physiology and clinical utility of anti-Mullerian hormone in women.Crossref | GoogleScholarGoogle Scholar |
Durlinger, A. L., Gruijters, M. J., Kramer, P., Karels, B., Kumar, T. R., Matzuk, M. M., Rose, U. M., de Jong, F. H., Uilenbroek, J. T., Grootegoed, J. A., and Themmen, A. P. (2001). Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142, 4891–4899.
| Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGqu78%3D&md5=a9df796ada05baff13e5d0f5aad8cbc4CAS |
Faure, E., Gouédard, L., Imbeaud, S., Cate, R., Picard, J. Y., Josso, N., and di Clemente, N. (1996). Mutant isoforms of the anti-Müllerian hormone type II receptor are not expressed at the cell membrane. J. Biol. Chem. 271, 30571–30575.
| Mutant isoforms of the anti-Müllerian hormone type II receptor are not expressed at the cell membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlamtLo%3D&md5=c92d79af6fa7a168866477f10247dcc1CAS |
Garrel, G., Racine, C., L’Hôte, D., Denoyelle, C., Guigon, C. J., di Clemente, N., and Cohen-Tannoudji, J. (2016). Anti-Müllerian hormone: a new actor of sexual dimorphism in pituitary gonadotrope activity before puberty. Sci. Rep. 6, 23790.
| Anti-Müllerian hormone: a new actor of sexual dimorphism in pituitary gonadotrope activity before puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlt1GqsLg%3D&md5=bead62b198b9788f796201d1eef94552CAS |
Georgopoulos, N. A., Karagiannidou, E., Koika, V., Roupas, N. D., Armeni, A., Marioli, D., Papadakis, E., Welt, C. K., and Panidis, D. (2013). Increased frequency of the anti-Mullerian-inhibiting hormone receptor 2 (AMHR2) 482 A>G polymorphism in women with polycystic ovary syndrome: relationship to luteinizing hormone levels. J. Clin. Endocrinol. Metab. 98, E1866–E1870.
| Increased frequency of the anti-Mullerian-inhibiting hormone receptor 2 (AMHR2) 482 A>G polymorphism in women with polycystic ovary syndrome: relationship to luteinizing hormone levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2msrnN&md5=ab982d0cfe0c7c0c3dd4341d69e7ecc1CAS |
Hashizume, T., Horiuchi, M., Tate, N., Nonaka, S., Kojima, M., Hosoda, H., and Kangawa, K. (2003). Effects of ghrelin on growth hormone secretion from cultured adenohypophysial cells in cattle. Endocr. J. 50, 289–295.
| Effects of ghrelin on growth hormone secretion from cultured adenohypophysial cells in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVCmtrg%3D&md5=1917cf1d35556f248eba2d881fd917eeCAS |
Hashizume, T., Onodera, Y., Shida, R., Isobe, E., Suzuki, S., Sawai, K., Kasuya, E., and Nagy, G. M. (2009). Characteristics of prolactin-releasing response to salsolinol (SAL) and thyrotropin-releasing hormone (TRH) in ruminants. Domest. Anim. Endocrinol. 36, 99–104.
| Characteristics of prolactin-releasing response to salsolinol (SAL) and thyrotropin-releasing hormone (TRH) in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ahuw%3D%3D&md5=2b522284585bad65f268995a214fe053CAS |
Head, B. P., Patel, H. H., and Insel, P. A. (2014). Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta 1838, 532–545.
| Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWntr%2FJ&md5=5b4d114ee5a278f4d794fc8d92bcea2fCAS |
Hernandez-Medrano, J. H., Campbell, B. K., and Webb, R. (2012). Nutritional influences on folliculogenesis. Reprod. Domest. Anim. 47, 274–282.
| Nutritional influences on folliculogenesis.Crossref | GoogleScholarGoogle Scholar |
Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.
| SOSUI: classification and secondary structure prediction system for membrane proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks12gt70%3D&md5=54e43fddc5aa373b81d7b9282c22e97cCAS |
Hirschhorn, T., di Clemente, N., Amsalem, A. R., Pepinsky, R. B., Picard, J. Y., Smorodinsky, N. I., Cate, R. L., and Ehrlich, M. (2015). Constitutive negative regulation in the processing of the anti-Müllerian hormone receptor II. J. Cell Sci. 128, 1352–1364.
| Constitutive negative regulation in the processing of the anti-Müllerian hormone receptor II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosV2ltLY%3D&md5=b6dd35ea672309b89a6d609cd7f7bd04CAS |
Hopp, T. P., and Woods, K. R. (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl Acad. Sci. USA 78, 3824–3828.
| Prediction of protein antigenic determinants from amino acid sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksF2lu7s%3D&md5=ddf369c3cb9f585bac5d28fe6c2bb481CAS |
Hossain, M. S., Mineno, K., and Katafuchi, T. (2016). Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLoS One 11, e0150846.
| Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling.Crossref | GoogleScholarGoogle Scholar |
Ilha, G. F., Rovani, M. T., Gasperin, B. G., Ferreira, R., de Macedo, M. P., Neto, O. A., Duggavathi, R., Bordignon, V., and Goncalves, P. B. (2016). Regulation of anti-Mullerian hormone and its receptor expression around follicle deviation in cattle. Reprod. Domest. Anim. 51, 188–194.
| Regulation of anti-Mullerian hormone and its receptor expression around follicle deviation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvFGgsr8%3D&md5=8d9349d852446565689c57926e44f0b6CAS |
Iqbal, J., Latchoumanin, O., Sari, I. P., Lang, R. J., Coleman, H. A., Parkington, H. C., and Clarke, I. J. (2009). Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release. Endocrinology 150, 4213–4220.
| Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyrtLbI&md5=f9b8b10a09284f7710e045f8cec57127CAS |
Ireland, J. L., Scheetz, D., Jimenez-Krassel, F., Themmen, A. P., Ward, F., Lonergan, P., Smith, G. W., Perez, G. I., Evans, A. C., and Ireland, J. J. (2008). Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol. Reprod. 79, 1219–1225.
| Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCltL3M&md5=da85184791dbbbec3a613e6b68f58441CAS |
Kadokawa, H., Suzuki, S., and Hashizume, T. (2008). Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Anim. Reprod. Sci. 105, 404–408.
| Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVWhsrs%3D&md5=becd1d6fa0be178a24abcff776c2828dCAS |
Kadokawa, H., Pandey, K., Nahar, A., Nakamura, U., and Rudolf, F. O. (2014). Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations. Anim. Reprod. Sci. 150, 84–95.
| Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Kgu7rJ&md5=db5174f6f3fb880cf0400844eca48aeeCAS |
Koizumi, M., and Kadokawa, H. (2017). Positive correlations of age and parity with plasma anti-Müllerian hormone concentrations in Japanese Black cows. J. Reprod. Dev. 63, 205–209.
| Positive correlations of age and parity with plasma anti-Müllerian hormone concentrations in Japanese Black cows.Crossref | GoogleScholarGoogle Scholar |
Kushnir, V. A., Seifer, D. B., Barad, D. H., Sen, A., and Gleicher, N. (2017). Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in reproductive medicine. J. Assist. Reprod. Genet. 34, 1105–1113.
| Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in reproductive medicine.Crossref | GoogleScholarGoogle Scholar |
Manders, E. M. M., Verbeek, F. J., and Aten, J. A. (1993). Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375–382.
| Measurement of co-localization of objects in dual-colour confocal images.Crossref | GoogleScholarGoogle Scholar |
Martin, T. L., Fogwell, R. L., and Ireland, J. J. (1991). Concentrations of inhibins and steroids in follicular fluid during development of dominant follicules in heifers. Biol. Reprod. 44, 693–700.
| Concentrations of inhibins and steroids in follicular fluid during development of dominant follicules in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhslymtro%3D&md5=8635538a2c0c02c8a7088a73027941caCAS |
Matteri, R. L., Roser, J. F., Baldwin, D. M., Lipovetsky, V., and Papkoff, H. (1987). Characterization of a monoclonal antibody which detects luteinizing hormone from diverse mammalian species. Domest. Anim. Endocrinol. 4, 157–165.
| Characterization of a monoclonal antibody which detects luteinizing hormone from diverse mammalian species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlt1Ogsrw%3D&md5=019c342c090b0ff2555d986425f5e3e1CAS |
Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2000). Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol. Reprod. 62, 1109–1115.
| Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htr8%3D&md5=6cefa07ecc98a6a85366e5b0587765bcCAS |
Monniaux, D., Baril, G., Laine, A. L., Jarrier, P., Poulin, N., Cognié, J., and Fabre, S. (2011). Anti-Mullerian hormone as a predictive endocrine marker for embryo production in the goat. Reproduction 142, 845–854.
| Anti-Mullerian hormone as a predictive endocrine marker for embryo production in the goat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GqtLbO&md5=104757cc8af1ac5339c4468a73dc3977CAS |
Nakamura, U., Rudolf, F. O., Pandey, K., and Kadokawa, H. (2015). The non-steroidal mycoestrogen zeranol suppresses luteinizing hormone secretion from the anterior pituitary of cattle via the estradiol receptor GPR30 in a rapid, non-genomic manner. Anim. Reprod. Sci. 156, 118–127.
| The non-steroidal mycoestrogen zeranol suppresses luteinizing hormone secretion from the anterior pituitary of cattle via the estradiol receptor GPR30 in a rapid, non-genomic manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFegs7Y%3D&md5=ee9273bd85917b35597f7ed1925f032bCAS |
Navratil, A. M., Song, H., Hernandez, J. B., Cherrington, B. D., Santos, S. J., Low, J. M., Do, M. H., and Lawson, M. A. (2009). Insulin augments gonadotropin-releasing hormone induction of translation in LbetaT2 cells. Mol. Cell. Endocrinol. 311, 47–54.
| Insulin augments gonadotropin-releasing hormone induction of translation in LbetaT2 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ksLzO&md5=9946ffb42bbb6a8a6feb86ac85613ac8CAS |
Nett, T. M., Cermak, D., Braden, T., Manns, J., and Niswender, G. (1987). Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domest. Anim. Endocrinol. 4, 123–132.
| Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktVWjtL8%3D&md5=a8df3f462e57bc0432b3b418c09f5281CAS |
Nussey, S. S., and Whitehead, S. A. (2001). The pituitary gland. In ‘Endocrinology: An Integrated Approach’. (Eds S. S. Nussey and S. A. Whitehead.) pp. 283–334. (BIOS Scientific Publishers: Oxford.)
Pals, K., Roudbaraki, M., and Denef, C. (2008). Growth hormone-releasing hormone and glucocorticoids determine the balance between luteinising hormone (LH) beta- and LH beta/follicle-stimulating hormone beta-positive gonadotrophs and somatotrophs in the 14-day-old rat pituitary tissue in aggregate cell culture. J. Neuroendocrinol. 20, 535–548.
| Growth hormone-releasing hormone and glucocorticoids determine the balance between luteinising hormone (LH) beta- and LH beta/follicle-stimulating hormone beta-positive gonadotrophs and somatotrophs in the 14-day-old rat pituitary tissue in aggregate cell culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsl2itLw%3D&md5=31fb49bcd2fe114646170ed6056d1e43CAS |
Pandey, K., Nahar, A., and Kadokawa, H. (2016). Method for isolating pure bovine gonadotrophs from anterior pituitary using magnetic nanoparticles and anti-gonadotropin-releasing hormone receptor antibody. J. Vet. Med. Sci. 78, 1699–1702.
| Method for isolating pure bovine gonadotrophs from anterior pituitary using magnetic nanoparticles and anti-gonadotropin-releasing hormone receptor antibody.Crossref | GoogleScholarGoogle Scholar |
Pandey, K., Kereilwe, O., Borromeo, V., and Kadokawa, H. (2017). Heifers express G-protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent manner. Anim. Reprod. Sci. 181, 93–102.
| Heifers express G-protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmtlSktrs%3D&md5=6440a73104a28c35cba126f1e01f5908CAS |
Pandey, K., Kereilwe, O., and Kadokawa, H. (2018). Heifers express G-protein coupled receptor 153 in anterior pituitary gonadotrophs in stage-dependent manner. Anim. Sci. J. 89, 60–71.
| 1:CAS:528:DC%2BC1cXhtFKhsbw%3D&md5=e664b14c1c00aaa5b53f8d5ef9d2c7eeCAS |
Pfeiffer, K. E., Jury, L. J., and Larson, J. E. (2014). Determination of anti-Müllerian hormone at estrus during a synchronized and a natural bovine estrous cycle. Domest. Anim. Endocrinol. 46, 58–64.
| Determination of anti-Müllerian hormone at estrus during a synchronized and a natural bovine estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslehsr3J&md5=37697a3abd8fc1686ac4a641be665bccCAS |
Poole, D. H., Ocón-Grove, O. M., and Johnson, A. L. (2016). Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells. Theriogenology 86, 1353–1360.
| Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosVSgurw%3D&md5=49ac73601d1ba518b5ddda5cd5ba833dCAS |
Ribeiro, E. S., Bisinotto, R. S., Lima, F. S., Greco, L. F., Morrison, A., Kumar, A., Thatcher, W. W., and Santos, J. E. (2014). Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility. J. Dairy Sci. 97, 6888–6900.
| Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVOhs7vJ&md5=319cb2be5d508104ac737fc151a21d74CAS |
Rico, C., Médigue, C., Fabre, S., Jarrier, P., Bontoux, M., Clément, F., and Monniaux, D. (2011). Regulation of anti-Müllerian hormone production in the cow: a multiscale study at endocrine, ovarian, follicular, and granulosa cell levels. Biol. Reprod. 84, 560–571.
| Regulation of anti-Müllerian hormone production in the cow: a multiscale study at endocrine, ovarian, follicular, and granulosa cell levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Omt7c%3D&md5=02ac6a170513dfc9042bae4e21b50f78CAS |
Ritter, S. L., and Hall, R. A. (2009). Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 10, 819–830.
| Fine-tuning of GPCR activity by receptor-interacting proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGlur%2FN&md5=88336494a78f347af7a6acb17f13ed11CAS |
Rocha, R. M., Lima, L. F., Carvalho, A. A., Chaves, R. N., Bernuci, M. P., Rosa-e-Silva, A. C., Rodrigues, A. P., Campello, C. C., and Figueiredo, J. R. (2016). Immunolocalization of the anti-Müllerian hormone (AMH) in caprine follicles and the effects of AMH on in vitro culture of caprine pre-antral follicles enclosed in ovarian tissue. Reprod. Domest. Anim. 51, 212–219.
| Immunolocalization of the anti-Müllerian hormone (AMH) in caprine follicles and the effects of AMH on in vitro culture of caprine pre-antral follicles enclosed in ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvFGhu7g%3D&md5=b5d71993248fe8f42c9b0ef655b66ce6CAS |
Sakalar, C., Mazumder, S., Johnson, J. M., Altuntas, C. Z., Jaini, R., Aguilar, R., Naga Prasad, S. V., Connolly, D. C., and Tuohy, V. K. (2015). Regulation of murine ovarian epithelial carcinoma by vaccination against the cytoplasmic domain of anti-Müllerian hormone receptor II. J. Immunol. Res. 2015, 630287.
| Regulation of murine ovarian epithelial carcinoma by vaccination against the cytoplasmic domain of anti-Müllerian hormone receptor II.Crossref | GoogleScholarGoogle Scholar |
Satake, H., Matsubara, S., Aoyama, M., Kawada, T., and Sakai, T. (2013). GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity. Front. Endocrinol. (Lausanne) 4, 100.
| GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity.Crossref | GoogleScholarGoogle Scholar |
Seifer, D. B., and Merhi, Z. (2014). Is AMH a regulator of follicular atresia? J. Assist. Reprod. Genet. 31, 1403–1407.
| Is AMH a regulator of follicular atresia?Crossref | GoogleScholarGoogle Scholar |
Simons, K., and Tooter, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.
| Lipid rafts and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVGjtbo%3D&md5=258771d6c75b9b9220e2bae85a83ae71CAS |
Suzuki, S., Kadokawa, H., and Hashizume, T. (2008). Direct kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Anim. Reprod. Sci. 103, 360–365.
| Direct kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtb7P&md5=167d85691bd6e8208feb52db893c28fcCAS |
Townsend, J., Sneddon, C. L., and Tortonese, D. J. (2004). Gonadotroph heterogeneity, density and distribution, and gonadotroph-lactotroph associations in the pars distalis of the male equine pituitary gland. J. Neuroendocrinol. 16, 432–440.
| Gonadotroph heterogeneity, density and distribution, and gonadotroph-lactotroph associations in the pars distalis of the male equine pituitary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVygur0%3D&md5=35cb502ada34b2e52cbfdb8cf411c3ceCAS |
Visser, J. A., and Themmen, A. P. (2014). Role of anti-Mullerian hormone and bone morphogenetic proteins in the regulation of FSH sensitivity. Mol. Cell. Endocrinol. 382, 460–465.
| Role of anti-Mullerian hormone and bone morphogenetic proteins in the regulation of FSH sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2nu7jL&md5=fd79540a35386f4ad98ccb772b1856afCAS |
Wehmeyer, L., Du Toit, A., Lang, D. M., and Hapgood, J. P. (2014). Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation. J. Biol. Chem. 289, 10235–10251.
| Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ajtrk%3D&md5=71f2d14ec82fdeb997ee1cdb14c12ff6CAS |
Young, J. M., Juengel, J. L., Dodds, K. G., Laird, M., Dearden, P. K., McNeilly, A. S., McNatty, K. P., and Wilson, T. (2008). The activin receptor-like kinase 6 Booroola mutation enhances suppressive effects of bone morphogenetic protein 2 (BMP2), BMP4, BMP6 and growth and differentiation factor-9 on FSH release from ovine primary pituitary cell cultures. J. Endocrinol. 196, 251–261.
| The activin receptor-like kinase 6 Booroola mutation enhances suppressive effects of bone morphogenetic protein 2 (BMP2), BMP4, BMP6 and growth and differentiation factor-9 on FSH release from ovine primary pituitary cell cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVaisrc%3D&md5=bb9baf7d9c96ab95d311b901b8d2a588CAS |