Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Temporally differential protein expression of glycolytic and glycogenic enzymes during in vitro preimplantation bovine embryo development

Manuel García-Herreros A B C , Constantine A. Simintiras B and Patrick Lonergan B
+ Author Affiliations
- Author Affiliations

A National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Quinta da Fonte Boa 2005-048, Santarém, Portugal.

B School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin D04 N2E5, Ireland.

C Corresponding author. Email: herrerosgm@gmail.com

Reproduction, Fertility and Development 30(9) 1245-1252 https://doi.org/10.1071/RD17429
Submitted: 17 October 2017  Accepted: 1 March 2018   Published: 23 March 2018

Abstract

Proteomic analyses are useful for understanding the metabolic pathways governing embryo development. This study investigated the presence of enzymes involved in glycolysis and glycogenesis in in vitro-produced bovine embryos at five developmental stages leading up to blastocyst formation. The enzymes examined were: (1) glycolytic: hexokinase-I (HK-I), phosphofructokinase-1 (PFK-1), pyruvate kinase mutase 1/2 (PKM-1/2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and (2) glycogenic: glycogen synthase kinase-3 isoforms α/ β (GSK-3α/β). Glucose transporter-1 (GLUT-1) was also analysed. The developmental stages examined were: (1) 2–4-cell, (2) 5–8-cell, (3) 16-cell, (4) morula and (5) expanded blastocyst. The enzymes HK-I, PFK-1, PKM-1/2, GAPDH and GLUT-1 were differentially expressed throughout all stages (P < 0.05). GSK-3α and β were also differentially expressed from the 2–4-cell to the expanded blastocyst stage (P < 0.05) and GLUT-1 was identified throughout. The general trend was that the abundance of PFK1, GAPDH and PKM-1/2 decreased whereas HK-I, phospho-GSK3α (P-GSK3α) and P-GSK3β levels increased as the embryo advanced. In contrast, GLUT-1 expression peaked at the 16-cell stage. These data combined suggest that in vitro bovine embryo metabolism switches from being glycolytic-centric to glycogenic-centric around the 16-cell stage, the developmental window also characterised by embryonic genome activation.

Additional keywords: cattle, developmental stages, early embryos, metabolic pathways, signal transduction.


References

Bermejo-Álvarez, P., Lonergan, P., Rizos, D., and Gutiérrez-Adan, A. (2010). Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod. Biomed. Online 20, 341–349.
Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis.Crossref | GoogleScholarGoogle Scholar |

Blomberg, L., Hashizume, K., and Viebahn, C. (2008). Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 135, 181–195.
Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL8%3D&md5=0249923464e9c7796fa2d5033faaaa43CAS |

Brison, D. R., and Leese, H. J. (1991). Energy metabolism in late preimplantation rat embryos. J. Reprod. Fertil. 93, 245–251.
Energy metabolism in late preimplantation rat embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt12isL4%3D&md5=a516eee644768761282fc24b78bc579cCAS |

Cagnone, G. L., and Sirard, M. A. (2013). Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts. Mol. Reprod. Dev. 80, 297–314.
Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOhsLw%3D&md5=1daa3cf3eac27e296ad56c016466ccc3CAS |

Cagnone, G. L., Dufort, I., Vigneault, C., and Sirard, M. A. (2012). Differential gene expression profile in bovine blastocysts resulting from hyperglycemia exposure during early cleavage stages. Biol. Reprod. 86, 50.
Differential gene expression profile in bovine blastocysts resulting from hyperglycemia exposure during early cleavage stages.Crossref | GoogleScholarGoogle Scholar |

Chappel, S. (2013). The role of mitochondria from mature oocyte to viable blastocyst. Obstet. Gynecol. Int. 2013, 183024.
The role of mitochondria from mature oocyte to viable blastocyst.Crossref | GoogleScholarGoogle Scholar |

Collado-Fernandez, E., Picton, H. M., and Dumollard, R. (2012). Metabolism throughout follicle and oocyte development in mammals. Int. J. Dev. Biol. 56, 799–808.
Metabolism throughout follicle and oocyte development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyqsL8%3D&md5=168ed0d9f0f3251935447f56246101e8CAS |

De Bie, J., Marei, W. F., Maillo, V., Jordaens, L., Gutierrez-Adan, A., Bols, P. E., and Leroy, J. L. (2017). Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod. Fertil. Dev. 29, 2284–2300.
Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsFylsrjM&md5=7742b46b75f886ef995cd229f6200394CAS |

Diskin, M. G., and Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43, 260–267.
Embryonic and early foetal losses in cattle and other ruminants.Crossref | GoogleScholarGoogle Scholar |

Diskin, M. G., Parr, M. H., and Morris, D. G. (2012). Embryo death in cattle: an update. Reprod. Fertil. Dev. 24, 244–251.
Embryo death in cattle: an update.Crossref | GoogleScholarGoogle Scholar |

Garcia-Herreros, M., Aparicio, I. M., Rath, D., Fair, T., and Lonergan, P. (2012). Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro. Reprod. Fertil. Dev. 24, 344–352.
Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OitLY%3D&md5=b3d04988ede5b5a0ed342d94eb2c2b6aCAS |

Gardner, D. K., Lane, M., and Batt, P. (1993). Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol. Reprod. Dev. 36, 313–319.
Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFentLo%3D&md5=2e0535e286b85b4bd36c96decd9801a7CAS |

Harris, D., Huang, B., and Oback, B. (2013). Inhibition of MAP2K and GSK3 signaling promotes bovine blastocyst development and epiblast-associated expression of pluripotency factors. Biol. Reprod. 88, 74.
Inhibition of MAP2K and GSK3 signaling promotes bovine blastocyst development and epiblast-associated expression of pluripotency factors.Crossref | GoogleScholarGoogle Scholar |

Harvey, A. J., Navarrete Santos, A., Kirstein, M., Kind, K. L., Fischer, B., and Thompson, J. G. (2007). Differential expression of oxygen-regulated genes in bovine blastocysts. Mol. Reprod. Dev. 74, 290–299.
Differential expression of oxygen-regulated genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlCltbk%3D&md5=3636566c42b08e9407d5cc7fbd930ae2CAS |

Holm, P., Booth, P. J., Schmidt, M. H., Greve, T., and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGnsw%3D%3D&md5=0ce78714046e1344c7ebc67217c55bdeCAS |

Jensen-Smith, H. C., Hallworth, R., and Nichols, M. G. (2012). Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells. PLoS One 7, e38471.
Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFSqtr4%3D&md5=ec1955ad7cb68e0524af8b83444eaba8CAS |

Kimura, K., Iwata, H., and Thompson, J. G. (2008). The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Anim. Reprod. Sci. 103, 228–238.
The effect of glucosamine concentration on the development and sex ratio of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtLfL&md5=2c1caf1f5226ff87f5549eae6b7b21bfCAS |

Krisher, R. L., Lane, M., and Bavister, B. D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–1352.
Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVejtr4%3D&md5=3b25820bf59eb9dc6e847aa804f750f0CAS |

Laskowski, D., Båge, R., Humblot, P., Andersson, G., Sirard, M. A., and Sjunnesson, Y. (2017). Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine Day 8 blastocysts. Theriogenology 101, 15–25.
Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine Day 8 blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFGnurjO&md5=73237e44605e1ffafa961647a68844b1CAS |

Leese, H. J. (1995). Metabolic control during preimplantation mammalian development Hum. Reprod. Update 1, 63–72.
Metabolic control during preimplantation mammalian developmentCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3jsFSmuw%3D%3D&md5=308fc5b7938181d053ebc190cecc705fCAS |

Leese, H. J. (2015). History of oocyte and embryo metabolism. Reprod. Fertil. Dev. 27, 567–571.
History of oocyte and embryo metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVWnurg%3D&md5=caaf18a5881b97042432ba45f86704a0CAS |

Lequarre, A. S., Grisart, B., Moreau, B., Schuurbiers, N., Massip, A., and Dessy, F. (1997). Glucose metabolism during bovine preimplantation development: analysis of gene expression in single oocytes and embryos. Mol. Reprod. Dev. 48, 216–226.
Glucose metabolism during bovine preimplantation development: analysis of gene expression in single oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFKms7s%3D&md5=48f1de5e00744f64c207f5fbcf5ed5dcCAS |

Leroy, J. L., Valckx, S. D., Jordaens, L., De Bie, J., Desmet, K. L., Van Hoeck, V., Britt, J. H., Marei, W. F., and Bols, P. E. (2015). Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod. Fertil. Dev. 27, 693–703.
Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVWntbc%3D&md5=03d3cbc427c1a426c71a1d061d5c2611CAS |

Lonergan, P., Fair, T., Forde, N., and Rizos, D. (2016). Embryo development in dairy cattle. Theriogenology 86, 270–277.
Embryo development in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsVWgurk%3D&md5=fce87f53561130a817e5fc0320d8bdffCAS |

Lucy, M. C., Butler, S. T., and Garverick, H. A. (2014). Endocrine and metabolic mechanisms linking postpartum glucose with early embryonic and foetal development in dairy cows. Animal 8, 82–90.
Endocrine and metabolic mechanisms linking postpartum glucose with early embryonic and foetal development in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2qtrY%3D&md5=d0e1cd952231494d93fe2fd0047634c0CAS |

Miyazawa, H., Yamaguchi, Y., Sugiura, Y., Honda, K., Kondo, K., Matsuda, F., Yamamoto, T., Suematsu, M., and Miura, M. (2017). Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching. Development 144, 63–73.
Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtF2hu7nJ&md5=1fd08bcd0c99d0047c55a98f58cc3b5aCAS |

Niemann, H., and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 21–34.
Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyqug%3D%3D&md5=b2fa5b25ae2c398000fc3baa3f2b73faCAS |

Rieger, D., McGowan, L. T., Cox, S. F., Pugh, P. A., and Thompson, J. G. (2002). Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod. Fertil. Dev. 14, 339–343.
Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKnt7w%3D&md5=406012640fb9213321a50d363fca0af5CAS |

Rizos, D., Maillo, V., Sánchez-Calabuig, M. J., and Lonergan, P. (2017). The consequences of maternal–embryonic cross talk during the periconception period on subsequent embryonic development. Adv. Exp. Med. Biol. 1014, 69–86.
The consequences of maternal–embryonic cross talk during the periconception period on subsequent embryonic development.Crossref | GoogleScholarGoogle Scholar |

Sandra, O., Charpigny, G., Galio, L., and Hue, I. (2017). Preattachment embryos of domestic animals: insights into development and paracrine secretions. Annu. Rev. Anim. Biosci. 5, 205–228.
Preattachment embryos of domestic animals: insights into development and paracrine secretions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVyis7zJ&md5=5a52c61bd84af74b78d73950cfa647efCAS |

Sartori, R., Bastos, M. R., and Wiltbank, M. C. (2010). Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reprod. Fertil. Dev. 22, 151–158.
Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Schultz, G. A., Hogan, A., Watson, A. J., Smith, R. M., and Heyner, S. (1992). Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reprod. Fertil. Dev. 4, 361–371.
Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1yhsA%3D%3D&md5=48ae1cb0f155c22e1be4a8cec1adc7d6CAS |

Sinclair, K. D., Rooke, J. A., and McEvoy, T. G. (2003). Regulation of nutrient uptake and metabolism in pre-elongation ruminant embryos. Reprod. Suppl. 61, 371–385.
| 1:CAS:528:DC%2BD3sXptFKhtrs%3D&md5=dcbd93602081acd24e679b0e5e7c7caaCAS |

Sirard, M. A., Dufort, I., Coenen, K., Tremblay, K., Massicotte, L., and Robert, C. (2003). The use of genomics and proteomics to understand oocyte and early embryo functions in farm animals. Reprod. Suppl. 61, 117–129.
| 1:CAS:528:DC%2BD3sXptFKhsLk%3D&md5=b373c88d2345f7f2016fb5fae2dd4f54CAS |

Smith, L. C., Thundathil, J., and Filion, F. (2005). Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies. Reprod. Fertil. Dev. 17, 15–22.
Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurnE&md5=63910b0477deb55f25b6c0d368aef9aaCAS |

Thatcher, W., Santos, J. E., and Staples, C. R. (2011). Dietary manipulations to improve embryonic survival in cattle. Theriogenology 76, 1619–1631.
Dietary manipulations to improve embryonic survival in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanur3N&md5=205297d2fc085135ef883b3e1f4f4227CAS |

Thompson, J. G. (2000). In vitro culture and embryo metabolism of cattle and sheep embryos – a decade of achievement. Anim. Reprod. Sci. 60–61, 263–275.
In vitro culture and embryo metabolism of cattle and sheep embryos – a decade of achievement.Crossref | GoogleScholarGoogle Scholar |

Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=9035f52d82055c617fd096b648cf24afCAS |

Velazquez, M. A. (2015). Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest. Anim. Endocrinol. 51, 27–45.
Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSiu77O&md5=27b8e0f08c3f82aa5ffff835aaadcfdfCAS |

Wathes, D. C. (2012). Mechanisms linking metabolic status and disease with reproductive outcome in the dairy cow. Reprod. Domest. Anim. 47, 304–312.
Mechanisms linking metabolic status and disease with reproductive outcome in the dairy cow.Crossref | GoogleScholarGoogle Scholar |

Wrenzycki, C., Herrmann, D., Carnwath, J. W., and Niemann, H. (1998). Expression of RNA from developmentally important genes in preimplantation bovine embryos produced in TCM supplemented with BSA. J. Reprod. Fertil. 112, 387–398.
Expression of RNA from developmentally important genes in preimplantation bovine embryos produced in TCM supplemented with BSA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVentbg%3D&md5=914bb8716cb63fcd791e3de52e30aeb9CAS |