Lipid profile of bovine blastocysts exposed to insulin during in vitro oocyte maturation
Denise Laskowski A E F , Göran Andersson B E , Patrice Humblot A E , Marc-André Sirard C , Ylva Sjunnesson A E , Christina R. Ferreira D , Valentina Pirro D and Renée Båge A EA Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden.
B Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, SE-750 07 Uppsala, Sweden.
C Departement des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Pavillon Des Services, Local 2732, University Laval, Québec G1V 0A6, Canada.
D Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
E Centre for Reproductive Biology in Uppsala (CRU), Box 7054, 75007 Uppsala, Sweden.
F Corresponding author. Email: denise.laskowski@slu.se
Reproduction, Fertility and Development 30(9) 1253-1266 https://doi.org/10.1071/RD17248
Submitted: 20 February 2017 Accepted: 1 March 2018 Published: 16 April 2018
Abstract
Insulin is a key hormone with important functions in energy metabolism and is involved in the regulation of reproduction. Hyperinsulinaemia is known to impair fertility (for example, in obese mothers); therefore, we aimed to investigate the impact of elevated insulin concentrations during the sensitive period of oocyte maturation on gene expression and lipid profiles of the bovine Day-8 embryo. Two different insulin concentrations were used during in vitro oocyte maturation (INS10 = 10 µg mL−1 and INS0.1 = 0.1 µg mL−1) in order to observe possible dose-dependent effects or thresholds for hyperinsulinaemia in vitro. By investigating gene expression patterns by an mRNA microarray in combination with lipid profile analysis by desorption electrospray ionisation-mass spectrometry (DESI-MS) of embryos derived from insulin-treated oocytes, we gained further insights regarding molecular responses of embryos to insulin provocation during the first days of development. Lipid metabolism appeared to be influenced on multiple levels according to gene expression results but the profiles collected in positive-ion mode by DESI-MS (showing mostly ubiquinone, cholesteryl esters and triacylglycerols) did not differ significantly from controls. There are parallels in follicular development of ruminants and humans that make this bovine model relevant for comparative research on early human embryonic development during hyperinsulinaemia.
Additional keywords: early embryonic development, hyperinsulinaemia, lipid metabolism, metabolic imbalance.
References
Aardema, H., Lolicato, F., van de Lest, C. H. A., Brouwers, J. F., Vaandrager, A. B., van Tol, H. T. A., Roelen, B. A. J., Vos, P. L. A. M., Helms, J. B., and Gadella, B. M. (2013). Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol. Reprod. 88, 164.| Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage.Crossref | GoogleScholarGoogle Scholar |
Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 57–66.
| Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejur4%3D&md5=652c85c0a29dd11c867af34b7d88d052CAS |
Amin, A., Gad, A., Salilew-Wondim, D., Prastowo, S., Held, E., Hoelker, M., Rings, F., Tholen, E., Neuhoff, C., Looft, C., Schellander, K., and Tesfaye, D. (2014). Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol. Reprod. Dev. 81, 497–513.
| Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Onsbo%3D&md5=af611e281fb161d5e07b96b5aeb8d865CAS |
Awasthi, H., Saravia, F., Rodríguez-Martínez, H., and Båge, R. (2010). Do cytoplasmic lipid droplets accumulate in immature oocytes from over-conditioned repeat breeder dairy heifers? Reprod. Domest. Anim. 45, e194–e198.
| 1:STN:280:DC%2BC3MzosFCgtQ%3D%3D&md5=fee4378aa493b6dedf4f89d0d366572aCAS |
Awazawa, M., Ueki, K., Inabe, K., Yamauchi, T., Kaneko, K., and Okazaki, Y. (2009). Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem. Biophys. Res. Commun. 382, 51–56.
| Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2ntb8%3D&md5=7b0a71bf1d3de3200fd893d64123d504CAS |
Azzout-Marniche, D., Guichard, C., Foretz, M., Ferré, P., and Foufelle, F. (2000). Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem. J. 350, 389–393.
| Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVGksLc%3D&md5=f823b596b2b26cb4b8c3b760bb68614bCAS |
Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91–148.
| Culture of preimplantation embryos: facts and artifacts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fps1Cisw%3D%3D&md5=93bd9a6c6c4241dbf10fb9443a3a1a4dCAS |
Boden, G., and Shulman, G. I. (2002). Free fatty acids in obesity and Type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest. 32, 14–23.
| Free fatty acids in obesity and Type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslCksb8%3D&md5=d46b2f796d6f82fd487290d4f2e3e8a1CAS |
Cagnone, G. L., and Sirard, M. A. (2013). Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts. Mol. Reprod. Dev. 80, 297–314.
| Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOhsLw%3D&md5=1daa3cf3eac27e296ad56c016466ccc3CAS |
Cameron, A. J., Shaw, J. E., and Zimmet, P. Z. (2004). The metabolic syndrome: prevalence in worldwide populations Endocrinol. Metab. Clin. North Am. 33, 351–375.
| The metabolic syndrome: prevalence in worldwide populationsCrossref | GoogleScholarGoogle Scholar |
Catalano, P. M., Presley, L., Minium, J., and Hauguel-de Mouzon, S. (2009). Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32, 1076–1080.
| Fetuses of obese mothers develop insulin resistance in utero.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOqs7s%3D&md5=ae341f683d2a580e3b5e9e4616b4783eCAS |
Cetica, P., Pintos, L., Dalvit, G., and Beconi, M. (2002). Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124, 675–681.
| Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KksA%3D%3D&md5=b4f2074cbb4dcd962aaa56a1faf02ec5CAS |
Cooper, R. A. (1978). Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. J. Supramol. Struct. 8, 413–430.
| Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmvFCrsg%3D%3D&md5=1a07b282550913e21bf3395e304b8d01CAS |
De Koster, J. D., and Opsomer, G. (2013). Insulin resistance in dairy cows. Vet. Clin. North Am. Food Anim. Pract. 29, 299–322.
| Insulin resistance in dairy cows.Crossref | GoogleScholarGoogle Scholar |
De Pablo, F., Scott, L. A., and Roth, J. (1990). Insulin and insulin-like growth factor I in early development: peptides, receptors and biological events. Endocr. Rev. 11, 558–577.
| Insulin and insulin-like growth factor I in early development: peptides, receptors and biological events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVKju74%3D&md5=3a955f75d771e8f622651e36b4b55290CAS |
Dufort, I., Robert, C., and Sirard, M. A. (2015). Studying bovine early embryo transcriptome by microarray. Methods Mol. Biol. 1222, 197–208.
| Studying bovine early embryo transcriptome by microarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVGmtbnO&md5=67ae08ae6ea69b76a648c578ef645a4cCAS |
Eckel, R. H., Grundy, S. M., and Zimmet, P. Z. (2005). The metabolic syndrome. Lancet 365, 1415–1428.
| The metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVegtbg%3D&md5=d6a29dd7311bd10eff27b34587f15362CAS |
Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.
| Gene expression omnibus: NCBI gene expression and hybridization array data repository.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12kurs%3D&md5=f013dedbbfa8cba8ba93fbec91099b3bCAS |
Evans, R. M., Barish, G. D., and Wang, Y.-X. (2004). PPARs and the complex journey to obesity. Nat. Med. 10, 355–361.
| PPARs and the complex journey to obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1ektLk%3D&md5=4d230d5aeee7ff43dda9c85621288e9cCAS |
Fajas, L., Schoonjans, K., Gelman, L., Kim, J. B., Najib, J., Martin, G., Fruchart, J. C., Briggs, M., Spiegelman, B. M., and Auwerx, J. (1999). Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol. Cell. Biol. 19, 5495–5503.
| Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVKjsL0%3D&md5=bbb49784e009b57c1a53c75bc9f3b6d6CAS |
Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
| Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltbc%3D&md5=bb81c6b68bacc307e8b30c0ada7cdb8cCAS |
Ferreira, C. R., Pirro, V., Eberlin, L., Hallett, J., and Cooks, R. G. (2012). Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 404, 2915–2926.
| Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCnsLjJ&md5=fdc4d67042580e2e80051e1f81fc329aCAS |
Ferreira, C. R., Jarmusch, A. K., Pirro, V., Alfaro, C. M., González-Serrano, A. F., Niemann, H., Wheeler, M. B., Rabel, R. A., Hallett, J. E., Houser, R., Kaufman, A., and Cooks, R. G. (2015). Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells. Reprod. Fertil. Dev. , .
| Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells.Crossref | GoogleScholarGoogle Scholar |
Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., le Lièpvre, X., Berthelier-Lubrano, C., Spiegelman, B., Kim, J. B., Ferré, P., and Foufelle, F. (1999). ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol. 19, 3760–3768.
| ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislSks70%3D&md5=2dace28317e43fdd64f19816eb63fa9dCAS |
Ghanem, N., Ha, A. N., Fakruzzaman, M., Bang, J. I., Lee, S. C., and Kong, I. K. (2014). Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism. Theriogenology 82, 238–250.
| Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVeltLc%3D&md5=531b66a4d926ab19e259fd83c87e3044CAS |
González-Serrano, A. F., Pirro, V., Ferreira, C. R., Oliveri, P., Eberlin, L. S., Heinzmann, J., Lucas-Hahn, A., Niemann, H., and Cooks, R. G. (2013). Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS One 8, e74981.
| Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos.Crossref | GoogleScholarGoogle Scholar |
Gordon, I. R. (2003). ‘Laboratory Production of Cattle Embryos’. 2nd edn. (CAB International, Cambridge University Press: Wallingford, UK.)
Gu, L., Liu, H., Gu, X., Boots, C., Moley, K. H., and Wang, Q. (2015). Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell. Mol. Life Sci. 72, 251–271.
| Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs12nt7rN&md5=2979026108ebf2d46c46de766d742f8eCAS |
Haggarty, P., Wood, M., Ferguson, E., Hoad, G., Srikantharajah, A., Milne, E., Hamilton, M., and Bhattacharya, S. (2006). Fatty acid metabolism in human preimplantation embryos. Hum. Reprod. 21, 766–773.
| Fatty acid metabolism in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Sks7w%3D&md5=cb41b2e7caa357c76480285ea5e5f538CAS |
Harvey, M. B., and Kaye, P. L. (1990). Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro. Development 110, 963–967.
| 1:CAS:528:DyaK3MXktVWgs7w%3D&md5=966dbec8856a0a08128471b0b4d204b8CAS |
Hayirli, A. (2006). The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle. Vet. Res. Commun. 30, 749–774.
| The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rnsFSksg%3D%3D&md5=1d94c3e9ce7cdb30c328fd61a1880d9eCAS |
Hooks, S. B., Ragan, S. P., and Lynch, K. R. (1998). Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett. 427, 188–192.
| Identification of a novel human phosphatidic acid phosphatase type 2 isoform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVKjtLk%3D&md5=4ebcd89a99215517fa42332383562fa6CAS |
Hotta, K., Funahashi, T., Bodkin, N. L., Ortmeyer, H. K., Arita, Y., Hansen, B. C., and Matsuzawa, Y. (2001). Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to Type 2 diabetes in rhesus monkeys. Diabetes 50, 1126–1133.
| Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to Type 2 diabetes in rhesus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFSgu7g%3D&md5=2e83a3bfaa569498ec8df5666429da8cCAS |
Jackson, A. U., Shum, T., Sokol, E., Dill, A., and Cooks, R. G. (2011). Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 399, 367–376.
| Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWjsb3K&md5=dadee316dd0e6a05fe4dceb138c8a63cCAS |
Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., and Tobe, K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792.
| Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvV2ltL0%3D&md5=64ef3569f167eeb1d1b794af52f41da1CAS |
Kersten, S. (2008). Peroxisome proliferator activated receptors and lipoprotein metabolism. PPAR Res. 2008, 132960.
| Peroxisome proliferator activated receptors and lipoprotein metabolism.Crossref | GoogleScholarGoogle Scholar |
Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B., and Wahli, W. (1999). Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498.
| Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVSntLo%3D&md5=728caea517ee36a006d81280bdf830edCAS |
Kim, H., Haluzik, M., Asghar, Z., Yau, D., Joseph, J. W., Fernandez, A. M., Reitman, M. L., Yakar, S., Stannard, B., Heron-Milhavet, L., Wheeler, M. B., and LeRoith, D. (2003). Peroxisome proliferator-activated receptor-alpha agonist treatment in a transgenic model of Type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes 52, 1770–1778.
| Peroxisome proliferator-activated receptor-alpha agonist treatment in a transgenic model of Type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlWhtbg%3D&md5=7737755d5d68982f497428f6c5c8d1e5CAS |
Kobayashi, A., Kang, M.-I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., and Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130–7139.
| Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlOjt7w%3D&md5=1600ae0e84278d7557ec87d9726ca0f9CAS |
Kota, B. P., Huang, T. H., and Roufogalis, B. D. (2005). An overview on biological mechanisms of PPARs. Pharmacol. Res. 51, 85–94.
| An overview on biological mechanisms of PPARs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFGk&md5=e227a71cb57faea53de16f5415971ebdCAS |
Kubisch, H. M., Larson, M. A., and Roberts, R. M. (1998). Relationship between age of blastocyst formation and interferon‐τ secretion by in vitro-derived bovine embryos. Mol. Reprod. Dev. 49, 254–260.
| Relationship between age of blastocyst formation and interferon‐τ secretion by in vitro-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXosVOqtQ%3D%3D&md5=4462b57230937935eca0f73430fc4b4eCAS |
Laskowski, D., Sjunnesson, Y., Humblot, P., Andersson, G., Gustafsson, H., and Båge, R. (2016a). The functional role of insulin in fertility and embryonic development – what can we learn from the bovine model? Theriogenology 86, 457–464.
| The functional role of insulin in fertility and embryonic development – what can we learn from the bovine model?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsVWns7k%3D&md5=9bc9cf34a864ee73ecaf84861b78fe07CAS |
Laskowski, D., Sjunnesson, Y., Humblot, P., Sirard, M. A., Andersson, G., Gustafsson, H., and Båge, R. (2016b). Insulin exposure during in vitro bovine oocyte maturation changes blastocyst gene expression and developmental potential. Reprod. Fertil. Dev. , .
| Insulin exposure during in vitro bovine oocyte maturation changes blastocyst gene expression and developmental potential.Crossref | GoogleScholarGoogle Scholar |
Laskowski, D., Sjunnesson, Y., Gustafsson, H., Humblot, P., Andersson, G., and Båge, R. (2016c). Insulin concentrations used in in vitro embryo production systems: a pilot study on insulin stability with an emphasis on concentrations measured in vivo. Acta Vet. Scand. 58, 66.
| Insulin concentrations used in in vitro embryo production systems: a pilot study on insulin stability with an emphasis on concentrations measured in vivo.Crossref | GoogleScholarGoogle Scholar |
Leroy, J. L. M. R., Vanholder, T., Delanghe, J. R., Opsomer, G., Van Soom, A., Bols, P. E. J., Dewulf, J., and de Kruif, A. (2004). Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology 62, 1131–1143.
| Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Kmsr8%3D&md5=a54a116982459a0f61a206b8d6d3b1ebCAS |
Leroy, J. L. M. R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
| Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFent7rJ&md5=fedd722822a11b1a573f17d1f0a1546dCAS |
Leroy, J. L. M. R., Van Hoeck, V., Clemente, M., Rizos, D., Gutierrez-Adan, A., Van Soom, A., Uytterhoeven, M., and Bols, P. E. (2010). The effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality. Hum. Reprod. 25, 768–778.
| The effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFeitr8%3D&md5=39009793616ef0049b563acbfb753eedCAS |
Lonergan, P., Khatir, H., Piumi, F., Rieger, D., Humblot, P., and Boland, M. P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 117, 159–167.
| Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlaltLo%3D&md5=b40cdbe58a2373bfadc8f98ea5687b5fCAS |
Lucy, M. C. (2001). Reproductive loss in high-producing dairy cattle: where will it end? J. Dairy Sci. 84, 1277–1293.
| Reproductive loss in high-producing dairy cattle: where will it end?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlKhu7Y%3D&md5=e6af7c6e46cb6ece4def609d18c14245CAS |
Matsui, M., Takahashi, Y., Hishinuma, M., and Kanagawa, H. (1995). Insulin and insulin-like growth factor-I (IGF-I) stimulate the development of bovine embryos fertilized in vitro. J. Vet. Med. Sci. 57, 1109–1111.
| 1:CAS:528:DyaK28XhtFyqt78%3D&md5=6a2863617fd90ab81828769cb57f8d78CAS |
McKeegan, P. J., and Sturmey, R. G. (2012). The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 59–67.
| The role of fatty acids in oocyte and early embryo development.Crossref | GoogleScholarGoogle Scholar |
Moreira, F., Paula-Lopes, F. F., Hansen, P. J., Badinga, L., and Thatcher, W. W. (2002). Effects of growth hormone and insulin-like growth factor-I on development of in vitro-derived bovine embryos. Theriogenology 57, 895–907.
| Effects of growth hormone and insulin-like growth factor-I on development of in vitro-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1KhsLs%3D&md5=4b36743847b8efe299eef0edb606d55bCAS |
Niemann, H., and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 21–34.
| Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyqug%3D%3D&md5=b2fa5b25ae2c398000fc3baa3f2b73faCAS |
Opsomer, G., Gröhn, Y. T., Hertl, J., Coryn, M., Deluyker, H., and de Kruif, A. (2000). Risk factors for post partum ovarian dysfunction in high producing dairy cows in Belgium: a field study. Theriogenology 53, 841–857.
| Risk factors for post partum ovarian dysfunction in high producing dairy cows in Belgium: a field study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ptlansg%3D%3D&md5=289ab22d696b7740794c3e38ced182d3CAS |
Pasquali, R., and Gambineri, A. (2006). Metabolic effects of obesity on reproduction. Reprod. Biomed. Online 12, 542–551.
| Metabolic effects of obesity on reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xltleitr4%3D&md5=16b11fe99c01b83d7880719440242479CAS |
Payne, A. H., and Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25, 947–970.
| Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWntg%3D%3D&md5=f573c02c03ae40a346ba0a8ad481f694CAS |
Pettinelli, P., Del Pozo, T., Araya, J., Rodrigo, R., Araya, A. V., Smok, G., Csendes, A., Gutierrez, L., Rojas, J., Korn, O., Maluenda, F., Diaz, J. C., Rencoret, G., Braghetto, I., Castillo, J., Poniachik, J., and Videla, L. A. (2009). Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim. Biophys. Acta 1792, 1080–1086.
| Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ylur3L&md5=2d8675ac801c860e995ca988015cbb4bCAS |
Phillips, M. C., Johnson, W. J., and Rothblat, G. H. (1987). Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906, 223–276.
| Mechanisms and consequences of cellular cholesterol exchange and transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlOjsbY%3D&md5=f3711c58ee79a7c9e1630f986ef9d67bCAS |
Pirro, V., Oliveri, P., Ramires-Ferreira, C., González-Serrano, A. F., Machaty, Z., and Cooks, R. G. (2014). Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal. Chim. Acta 848, 51–60.
| Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCjtLjN&md5=b1d4de9f3acf97ed7bc66271722f44c3CAS |
Prates, E. G., Nunes, J. T., and Pereira, R. M. (2014). A role of lipid metabolism during cumulus–oocyte complex maturation: impact of lipid modulators to improve embryo production. Mediators Inflamm. 2014, 692067.
| A role of lipid metabolism during cumulus–oocyte complex maturation: impact of lipid modulators to improve embryo production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cnosFSmug%3D%3D&md5=18f9afaf7904e2416eb49aaa6e45497bCAS |
Radhakrishnan, A., Goldstein, J. L., McDonald, J. G., and Brown, M. S. (2008). Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8, 512–521.
| Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2qtbnI&md5=c2ede21e430d9da424000abd4a60ee47CAS |
Rauw, W. M., Kanis, E., Noordhuizen-Stassen, E. N., and Grommers, F. J. (1998). Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest. Prod. Sci. 56, 15–33.
| Undesirable side effects of selection for high production efficiency in farm animals: a review.Crossref | GoogleScholarGoogle Scholar |
Rieger, D. (1992). Relationships between energy metabolism and development of early mammalian embryos. Theriogenology 37, 75–93.
| Relationships between energy metabolism and development of early mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Ggsb0%3D&md5=f64c526ebbeb538d2e97aaa79fc04717CAS |
Rieusset, J., Andreelli, F., Auboeuf, D., Roques, M., Vallier, P., Riou, J. P., Auwerx, J., Laville, M., and Vidal, H. (1999). Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 48, 699–705.
| Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFCqtrk%3D&md5=9c0a027548c88ca96b89f5cfdf613ef4CAS |
Rizos, D., Gutiérrez-Adán, A., Pérez-Garnelo, S., de la Fuente, J., Boland, M. P., and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
| Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWj&md5=0b3310fd8e64eef4c9ad1d5a230a6f5aCAS |
Robert, C., Nieminen, J., Dufort, I., Gagné, D., Grant, J. R., Cagnone, G., Plourde, D., Nivet, A.-L., Fournier, É., Paquet, É., Blazejczyk, M., Rigault, P., Juge, N., and Sirard, M.-A. (2011). Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Mol. Reprod. Dev. 78, 651–664.
| Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGns7vK&md5=7dbc6ac4a854135d1cab31c8bd4f74baCAS |
Rodríguez-Cruz, M., Sánchez González, R., Sánchez García, A. M., and Lòpez-Alarcòn, M. (2012). Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Gene 496, 28–36.
| Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar |
Ruotolo, G., and Howard, B. V. (2002). Dyslipidemia of the metabolic syndrome. Curr. Cardiol. Rep. 4, 494–500.
| Dyslipidemia of the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar |
Saltiel, A. R., and Kahn, C. R. (2001). Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414, 799–806.
| Insulin signaling and the regulation of glucose and lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhtlylsg%3D%3D&md5=47241f908410a872345f31d0acd41a12CAS |
Sebire, N. J., Jolly, M., Harris, J. P., Wadsworth, J., Joffe, M., Beard, R. W., Regan, L., and Robinson, S. (2001). Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int. J. Obes. Relat. Metab. Disord. 25, 1175–1182.
| Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FislGnsQ%3D%3D&md5=41257519b0f295394b39deb1f753ce6dCAS |
Shimomura, I., Bashmakov, Y., Ikemoto, S., Horton, J. D., Brown, M. S., and Goldstein, J. L. (1999a). Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 96, 13656–13661.
| Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1OqsLc%3D&md5=164a4b1e2169394636bfe2d717232089CAS |
Shimomura, I., Bashmakov, Y., and Horton, J. D. (1999b). Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 274, 30028–30032.
| Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVajt70%3D&md5=d83b4d388802d95f5287434fa5b7c3c0CAS |
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1–25.
| Linear models and empirical Bayes methods for assessing differential expression in microarray experiments.Crossref | GoogleScholarGoogle Scholar |
Spanos, S., Becker, D. L., Winston, R. M., and Hardy, K. (2000). Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol. Reprod. 63, 1413–1420.
| Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCksLw%3D&md5=6d101845f5ec7edabd9c1c66714df0e2CAS |
Spicer, L. J., and Echternkamp, S. E. (1995). The ovarian insulin and insulin-like growth factor system with an emphasis on domestic animals. Domest. Anim. Endocrinol. 12, 223–245.
| The ovarian insulin and insulin-like growth factor system with an emphasis on domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1Ort78%3D&md5=1aff8e0600e54df4210dcbfaf03e688bCAS |
Stachecki, J. J., and Armant, D. R. (1996). Regulation of blastocoele formation by intracellular calcium release is mediated through a phospholipase C-dependent pathway in mice. Biol. Reprod. 55, 1292–1298.
| Regulation of blastocoele formation by intracellular calcium release is mediated through a phospholipase C-dependent pathway in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFSnsQ%3D%3D&md5=7cf8c2685164e050182655e63a8b301eCAS |
Sturmey, R. G., Reis, A., Leese, H. J., and McEvoy, T. G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–58.
| Role of fatty acids in energy provision during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar |
Thompson, J. G. (2000). In vitro culture and embryo metabolism of cattle and sheep embryos - a decade of achievement. Anim. Reprod. Sci. 60–61, 263–275.
| In vitro culture and embryo metabolism of cattle and sheep embryos - a decade of achievement.Crossref | GoogleScholarGoogle Scholar |
Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
| Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=9035f52d82055c617fd096b648cf24afCAS |
Tontonoz, P., Hu, E., and Spiegelman, B. M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147–1156.
| Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FpsVaqsg%3D%3D&md5=8d58983dda009d0cdfba5374606203b5CAS |
Tosi, F., Sartori, F., Guarini, P., Olivieri, O., and Martinelli, N. (2014). Delta-5 and Delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. In ‘Oxidative Stress and Inflammation in Non-Communicable Diseases – Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology’. (Ed. J. Camps.) pp. 61–81. (Springer International Publish: New York.)
Van Soom, A., Van Vlaenderen, I., Mahmoudzadeh, A., Deluyker, H., and de Kruif, A. (1992). Compaction rate of in vitro-fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology 38, 905–919.
| Compaction rate of in vitro-fertilized bovine embryos related to the interval from insemination to first cleavage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvF2msw%3D%3D&md5=5be11ef285397da90548766739f39335CAS |
Wang, Y., Botolin, D., Xu, J., Christian, B., Mitchell, E., Jayaprakasam, B., Nair, M. G., Peters, J. M., Busik, J. V., Olson, L. K., and Jump, D. B. (2006). Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J. Lipid Res. 47, 2028–2041.
| Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Gjs7g%3D&md5=fedcf5a30223463a1092eb2932d0300aCAS |
Willnow, T. E., Hammes, A., and Eaton, S. (2007). Lipoproteins and their receptors in embryonic development: more than cholesterol clearance. Development 134, 3239–3249.
| Lipoproteins and their receptors in embryonic development: more than cholesterol clearance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Cnu7nF&md5=35811287cfd15be3ca278adb69e83a27CAS |
Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., Kubota, N., Terauchi, Y., Tobe, K., Miki, H., Tsuchida, A., Akanuma, Y., Nagai, R., Kimura, S., and Kadowaki, T. (2001). The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J. Biol. Chem. 276, 41245–41254.
| The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVKgtrg%3D&md5=05ffbd534738819719c47095a09ce6d8CAS |
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769.
| Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksV2itL8%3D&md5=89d5e9f8e9e6d4f45b97da53fa427765CAS |
Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L., and Brown, M. S. (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489–500.
| Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslyjt70%3D&md5=70e8c591bfb4fec507d0656c550cdb19CAS |
Zhang, D. D. (2006). Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769–789.
| Mechanistic studies of the Nrf2-Keap1 signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCnur%2FP&md5=8e08bf5ad2211e194cbb6313103fb0c3CAS |