Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Breeding animals for quality products: not only genetics

Pascale Chavatte-Palmer A B , Anne Tarrade A , Hélène Kiefer A , Véronique Duranthon A and Hélène Jammes A
+ Author Affiliations
- Author Affiliations

A INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France.

B Corresponding author. Email: pascale.chavatte@jouy.inra.fr

Reproduction, Fertility and Development 28(2) 94-111 https://doi.org/10.1071/RD15353
Published: 3 December 2015

Abstract

The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.

Additional keywords: Developmental Origins of Health and Disease (DOHaD), epigenetics, gametes, pregnancy, programming, selection.


References

Abecia, J. A., Casao, A., Pascual-Alonso, M., Lobón, S., Aguayo-Ulloa, L. A., Meikle, A., Forcada, F., Sosa, C., Marín, R. H., Silva, M. A., and Maria, G. A. (2014). The effect of periconceptional undernutrition of sheep on the cognitive/emotional response and oocyte quality of offspring at 30 days of age. J. Dev. Orig. Health Dis. 5, 79–87.
The effect of periconceptional undernutrition of sheep on the cognitive/emotional response and oocyte quality of offspring at 30 days of age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cjkvFOhsg%3D%3D&md5=69021950f16803103f9417cdf46763cfCAS | 24847694PubMed |

Akagi, S., Matsukawa, K., and Takahashi, S. (2014). Factors affecting the development of somatic cell nuclear transfer embryos in cattle. J. Reprod. Dev. 60, 329–335.
Factors affecting the development of somatic cell nuclear transfer embryos in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVeitbnK&md5=7c81d93743ac157ac5c8d9598c1b1811CAS | 25341701PubMed |

Alejandro, B., Pérez, R., Pedrana, G., Milton, J. T., Lopez, A., Blackberry, M. A., Rodriguez-Martinez, H., and Martin, G. B. (2002). Low maternal nutrition during pregnancy reduces the number of Sertoli cells in the newborn lamb. Reprod. Fertil. Dev. 14, 333–337.
| 12467358PubMed |

Allen, W. R., Wilsher, S., Turnbull, C., Stewart, F., Ousey, J., Rossdale, P. D., and Fowden, A. L. (2002). Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 123, 445–453.
Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Cls70%3D&md5=f3fa485a4384f926cbb34ade391d9760CAS | 11882022PubMed |

Allen, W. R., Wilsher, S., Tiplady, C., and Butterfield, R. M. (2004). The influence of maternal size on pre- and postnatal growth in the horse: III. Postnatal growth. Reproduction 127, 67–77.
The influence of maternal size on pre- and postnatal growth in the horse: III. Postnatal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOiurg%3D&md5=c45adc890edb5cd3c8fb711400ec3a31CAS | 15056771PubMed |

Banos, G., Brotherstone, S., and Coffey, M. P. (2007). Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows. J. Dairy Sci. 90, 3490–3499.
Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlCksbw%3D&md5=a9888f72792bb7c23480a599c7f90facCAS | 17582133PubMed |

Barker, D. J. (1992). The fetal origins of diseases of old age. Eur. J. Clin. Nutr. 46, S3–S9.
| 1425543PubMed |

Barker, D. J. P., and Osmond, C. (1986). Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales. Lancet 327, 1077–1081.
Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales.Crossref | GoogleScholarGoogle Scholar |

Barker, D. J., Bull, A. R., Osmond, C., and Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. BMJ 301, 259–262.
Fetal and placental size and risk of hypertension in adult life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czmtVSnsg%3D%3D&md5=b448c8a16a1a9737f48d3f1bad9c4b6fCAS | 2390618PubMed |

Barker, D. J. P., Thornburg, K. L., Osmond, C., Kajantie, E., and Eriksson, J. (2010). The surface area of the placenta and hypertension in the offspring in later life. Int. J. Dev. Biol. 54, 525–530.
The surface area of the placenta and hypertension in the offspring in later life.Crossref | GoogleScholarGoogle Scholar |

Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D’Udine, B., Foley, R. A., Gluckman, P., Godfrey, K., Kirkwood, T., Lahr, M. M., McNamara, J., Metcalfe, N. B., Monaghan, P., Spencer, H. G., and Sultan, S. E. (2004). Developmental plasticity and human health. Nature 430, 419–421.
Developmental plasticity and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVaksbk%3D&md5=5bfa47e573e562e02b7015e606d5c854CAS | 15269759PubMed |

Bee, G. (2004). Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter. J. Anim. Sci. 82, 826–836.
| 1:CAS:528:DC%2BD2cXhvVCku7g%3D&md5=3b8e8546af8ccd2c4e55f7f6c9f0c500CAS | 15032440PubMed |

Begum, G., Davies, A., Stevens, A., Oliver, M., Jaquiery, A., Challis, J., Harding, J., Bloomfield, F., and White, A. (2013). Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology 154, 4560–4569.
Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2it7bP&md5=4c6b989c9891a00acfac4e47cf757ffcCAS | 24064364PubMed |

Berry, D. P., Lonergan, P., Butler, S. T., Cromie, A. R., Fair, T., Mossa, F., and Evans, A. C. O. (2008). Negative influence of high maternal milk production before and after conception on offspring survival and milk production in dairy cattle. J. Dairy Sci. 91, 329–337.
Negative influence of high maternal milk production before and after conception on offspring survival and milk production in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGisA%3D%3D&md5=ee8499c955e947cc8e84d7be48976d1cCAS | 18096955PubMed |

Bieswal, F., Ahn, M. T., Reusens, B., Holvoet, P., Raes, M., Rees, W. D., and Remacle, C. (2006). The importance of catch-up growth after early malnutrition for the programming of obesity in male rat. Obesity (Silver Spring) 14, 1330–1343.
The importance of catch-up growth after early malnutrition for the programming of obesity in male rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjsbbP&md5=71dbddf3dd80b1640db026d74679b784CAS | 16988075PubMed |

Bispham, J., Gopalakrishnan, G. S., Dandrea, J., Wilson, V., Budge, H., Keisler, D. H., Pipkin, F. B., Stephenson, T., and Symonds, M. E. (2003). Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144, 3575–3585.
Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGjt7g%3D&md5=8adcb5ef86a2aea368445410a35315d4CAS | 12865340PubMed |

Blair, H. T., Jenkinson, C. M. C., Peterson, S. W., Kenyon, P. R., van der Linden, D. S., Davenport, L. C., Mackenzie, D. D. S., Morris, S. T., and Firth, E. C. (2010). Dam and granddam feeding during pregnancy in sheep affects milk supply in offspring and reproductive performance in grand-offspring. J. Anim. Sci. 88, E40–E50.
Dam and granddam feeding during pregnancy in sheep affects milk supply in offspring and reproductive performance in grand-offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslyrtQ%3D%3D&md5=0ca7ebcede188c43d5a2cc26394996fbCAS | 19966171PubMed |

Bloomfield, F. H., Oliver, M. H., Hawkins, P., Campbell, M., Phillips, D. J., Gluckman, P. D., Challis, J. R. G., and Harding, J. E. (2003). A periconceptional nutritional origin for noninfectious preterm birth. Science 300, 606.
A periconceptional nutritional origin for noninfectious preterm birth.Crossref | GoogleScholarGoogle Scholar | 12714735PubMed |

Bohnert, D. W., Stalker, L. A., Mills, R. R., Nyman, A., Falck, S. J., and Cooke, R. F. (2013). Late gestation supplementation of beef cows differing in BCS: effects on cow and calf performance. J. Anim. Sci. 91, 5485–5491.
Late gestation supplementation of beef cows differing in BCS: effects on cow and calf performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKkt7fF&md5=3b423aa43caa949ac1ac785ac4ef2ec8CAS | 23989877PubMed |

Boissonnas, C. C., Jouannet, P., and Jammes, H. (2013). Epigenetic disorders and male subfertility. Fertil. Steril. 99, 624–631.
Epigenetic disorders and male subfertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlGhtbY%3D&md5=e75f6dfd375cc6c0e97a2ea05170b487CAS | 23714437PubMed |

Borwick, S. C., Rhind, S. M., McMillen, S. R., and Racey, P. A. (1997). Effect of undernutrition of ewes from the time of mating on fetal ovarian development in mid gestation. Reprod. Fertil. Dev. 9, 711–715.
Effect of undernutrition of ewes from the time of mating on fetal ovarian development in mid gestation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3osV2nuw%3D%3D&md5=32a7a80f56e40c26c22c04dc81a7b4bdCAS | 9623491PubMed |

Carone, B. R., Fauquier, L., Habib, N., Shea, J. M., Hart, C. E., Li, R., Bock, C., Li, C., Gu, H., Zamore, P. D., Meissner, A., Weng, Z., Hofmann, H. A., Friedman, N. M., and Rando, O. J. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096.
Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agtrbE&md5=c8e9f278a6df95c4af7fff6205e5b887CAS | 21183072PubMed |

Carrell, D. T. (2012). Epigenetics of the male gamete. Fertil. Steril. 97, 267–274.
Epigenetics of the male gamete.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVerurY%3D&md5=6f26842b9db714f03874fef8297ba25fCAS | 22289286PubMed |

Chadio, S., and Kotsampasi, B. (2014). The role of early life nutrition in programming of reproductive function. J. Dev. Orig. Health Dis. 5, 2–15.
The role of early life nutrition in programming of reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cjkvFOisA%3D%3D&md5=970bb161fb4b4dfca54c0443eccde629CAS | 24847686PubMed |

Chavatte-Palmer, P., Dupont, C., Debus, N., and Camous, S. (2014). Nutritional programming and the reproductive function of the offspring. Anim. Prod. Sci. 54, 1166–1176.
Nutritional programming and the reproductive function of the offspring.Crossref | GoogleScholarGoogle Scholar |

Chavatte-Palmer, P., Vialard, F., Tarrade, A., Dupont, C., Duranthon, V., and Levy, R. (2015). DOHaD et programmation pré- et périconceptuelle. Med. Sci., , .

Chen, T. H. H., Chiu, Y. H., and Boucher, B. J. (2006). Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am. J. Clin. Nutr. 83, 688–692.
| 1:CAS:528:DC%2BD28XislSrs7s%3D&md5=b48e30beeeaba1ffaaba5c449b65b612CAS |

Clayton, E. H., Lamb, T. A., Refshauge, G., Kerr, M. J., Bailes, K. L., Ponnampalam, E. N., Friend, M. A., and Hopkins, D. L. (2014). Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids. Lipids 49, 767–775.
Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWnt73I&md5=1b13d8e82478f32b857f1ab4480a6f3aCAS | 24996881PubMed |

Cleal, J. K., Poore, K. R., Newman, J. P., Noakes, D. E., Hanson, M. A., and Green, L. R. (2007). The effect of maternal undernutrition in early gestation on gestation length and fetal and postnatal growth in sheep. Pediatr. Res. 62, 422–427.
The effect of maternal undernutrition in early gestation on gestation length and fetal and postnatal growth in sheep.Crossref | GoogleScholarGoogle Scholar | 17667859PubMed |

Clifton, V., Osei-Kumah, A., Hodyl, N., Scott, N., and Stark, M. (2009). Sex specific function of the human placenta: implication for fetal growth and survival. Reprod. Fertil. Dev. 21, 9.
Sex specific function of the human placenta: implication for fetal growth and survival.Crossref | GoogleScholarGoogle Scholar |

Connor, K. L., Bloomfield, F. H., Oliver, M. H., Harding, J. E., and Challis, J. R. G. (2009). Effect of periconceptional undernutrition in sheep on late gestation expression of mRNA and protein from genes involved in fetal adrenal steroidogenesis and placental prostaglandin production. Reprod. Sci. 16, 573–583.
Effect of periconceptional undernutrition in sheep on late gestation expression of mRNA and protein from genes involved in fetal adrenal steroidogenesis and placental prostaglandin production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Wlt7o%3D&md5=14c4d2c9d84e01518046cb5eb073a3f1CAS | 19293133PubMed |

Cushman, R. A., McNeel, A. K., and Freetly, H. C. (2014). The impact of cow nutrient status during the second and third trimesters on age at puberty, antral follicle count, and fertility of daughters. Livest. Sci. 162, 252–258.
The impact of cow nutrient status during the second and third trimesters on age at puberty, antral follicle count, and fertility of daughters.Crossref | GoogleScholarGoogle Scholar |

Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2001). Influence of placentally-mediated foetal growth restriction on the onset of puberty in male and female lambs. Reproduction 122, 375–383.
Influence of placentally-mediated foetal growth restriction on the onset of puberty in male and female lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVGksLY%3D&md5=8f016d9e3c4eba1cf3acd8767127c538CAS | 11597303PubMed |

Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2002). Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses. Reproduction 123, 769–777.
Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCiur8%3D&md5=1d627c207f7bf79414f7ee0c0512a3e8CAS | 12052231PubMed |

Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2003). Effect of maternal overnutrition during pregnancy on pituitary gonadotrophin gene expression and gonadal morphology in female and male foetal sheep at Day 103 of gestation. Placenta 24, 248–257.
Effect of maternal overnutrition during pregnancy on pituitary gonadotrophin gene expression and gonadal morphology in female and male foetal sheep at Day 103 of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOltA%3D%3D&md5=ceddd50080ac0c0de81e7a0ecddc6503CAS | 12566252PubMed |

Dean, W. (2014). DNA methylation and demethylation: a pathway to gametogenesis and development. Mol. Reprod. Dev. 81, 113–125.
DNA methylation and demethylation: a pathway to gametogenesis and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCjtL7E&md5=a37a6a0d757db80e49eb52b26ed30f5dCAS | 24214338PubMed |

Debus, N., Chavatte-Palmer, P., Viudes, G., Camous, S., Roséfort, A., and Hassoun, P. (2012). Maternal periconceptional undernutrition in Merinos d’Arles sheep: 1. Effects on pregnancy and reproduction results of mothers and offspring growth performances. Theriogenology 77, 1453–1465.
Maternal periconceptional undernutrition in Merinos d’Arles sheep: 1. Effects on pregnancy and reproduction results of mothers and offspring growth performances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVems74%3D&md5=cfffb924d5dad13b9bcf2bdfd6230592CAS | 22326588PubMed |

Desai, M., Gayle, D., Babu, J., and Ross, M. G. (2005). Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R91–R96.
Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCqurk%3D&md5=1835aad30610a147186ea906f8526f69CAS | 15297266PubMed |

Dias, B. G., and Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96.
Parental olfactory experience influences behavior and neural structure in subsequent generations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGqs7rE&md5=35b129a95712cf393dc635154411a480CAS | 24292232PubMed |

Doherty, R., O’Farrelly, C., and Meade, K. G. (2014). Comparative epigenetics: relevance to the regulation of production and health traits in cattle. Anim. Genet. 45, 3–14.
Comparative epigenetics: relevance to the regulation of production and health traits in cattle.Crossref | GoogleScholarGoogle Scholar | 24984755PubMed |

Donovan, E. L., Hernandez, C. E., Matthews, L. R., Oliver, M. H., Jaquiery, A. L., Bloomfield, F. H., and Harding, J. E. (2013). Periconceptional undernutrition in sheep leads to decreased locomotor activity in a natural environment. J. Dev. Orig. Health Dis. 4, 296–299.
Periconceptional undernutrition in sheep leads to decreased locomotor activity in a natural environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOkurjE&md5=84c79c4ca5bcd6589b45d820a947a54aCAS | 24993003PubMed |

Du, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P., and Nathanielsz, P. W. (2010). Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88, E51–E60.
Fetal programming of skeletal muscle development in ruminant animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslOisw%3D%3D&md5=618e292d9c7c07415e4ae1b7a6c744c5CAS | 19717774PubMed |

Eckert, J. J., Porter, R., Watkins, A. J., Burt, E., Brooks, S., Leese, H. J., Humpherson, P. G., Cameron, I. T., and Fleming, T. P. (2012). Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS One 7, e52791.
Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVKmtg%3D%3D&md5=646873f5cb17b61f90fc321f8cf61fbdCAS | 23300778PubMed |

Eckert, J. J., Velazquez, M. A., and Fleming, T. P. (2015). Cell signalling during blastocyst morphogenesis. Adv. Exp. Med. Biol. 843, 1–21.
Cell signalling during blastocyst morphogenesis.Crossref | GoogleScholarGoogle Scholar | 25956293PubMed |

Edwards, L. J., and McMillen, I. C. (2002). Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo–pituitary adrenal axis in sheep during late gestation. Biol. Reprod. 66, 1562–1569.
Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo–pituitary adrenal axis in sheep during late gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFWnsLY%3D&md5=b7eb69529419754199b5ef10b762b1d0CAS | 11967224PubMed |

Edwards, L. J., Bryce, A. E., Coulter, C. L., and McMillen, I. C. (2002). Maternal undernutrition throughout pregnancy increases adrenocorticotrophin receptor and steroidogenic acute regulatory protein gene expression in the adrenal gland of twin fetal sheep during late gestation. Mol. Cell. Endocrinol. 196, 1–10.
Maternal undernutrition throughout pregnancy increases adrenocorticotrophin receptor and steroidogenic acute regulatory protein gene expression in the adrenal gland of twin fetal sheep during late gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOmsL0%3D&md5=907c3313d62360ac4ec9434fb4154a34CAS | 12385820PubMed |

Edwards, L. J., McFarlane, J. R., Kauter, K. G., and McMillen, I. C. (2005). Impact of maternal undernutrition before and during pregnancy on maternal and fetal leptin and fetal adiposity in singleton and twin pregnancies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R39–R45.
Impact of maternal undernutrition before and during pregnancy on maternal and fetal leptin and fetal adiposity in singleton and twin pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCqtbc%3D&md5=604328594d97e433bd116879d70f5116CAS | 15191901PubMed |

Eissenberg, J. C., and Elgin, S. C. (2014). HP1a: a structural chromosomal protein regulating transcription. Trends Genet. 30, 103–110.
HP1a: a structural chromosomal protein regulating transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Crsbg%3D&md5=09b63112ed213cb8301e8f06e0f04284CAS | 24555990PubMed |

Faure, C., Dupont, C., Chavatte-Palmer, P., Gautier, B., Levy, R., and Group, A. C. (2015). Are semen parameters related to birth weight? Fertil. Steril. 103, 6–10.
Are semen parameters related to birth weight?Crossref | GoogleScholarGoogle Scholar | 25552408PubMed |

Fenic, I., Hossain, H. M., Sonnack, V., Tchatalbachev, S., Thierer, F., Trapp, J., Failing, K., Edler, K. S., Bergmann, M., Jung, M., Chakraborty, T., and Steger, K. (2008). In vivo application of histone deacetylase inhibitor trichostatin-A impairs murine male meiosis. J. Androl. 29, 172–185.
In vivo application of histone deacetylase inhibitor trichostatin-A impairs murine male meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVShu7o%3D&md5=231fb6568524212a771e58fef1d6455aCAS | 18046049PubMed |

Ferguson-Smith, A. C., and Patti, M.-E. (2011). You are what your dad ate. Cell Metab. 13, 115–117.
You are what your dad ate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaju7w%3D&md5=902bb61e8cffa1328c44dae14b87f9d3CAS | 21284975PubMed |

Field, M. E., Anthony, R. V., Engle, T. E., Archibeque, S. L., Keisler, D. H., and Han, H. (2015). Duration of maternal undernutrition differentially alters fetal growth and hormone concentrations. Domest. Anim. Endocrinol. 51, 1–7.
Duration of maternal undernutrition differentially alters fetal growth and hormone concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ymu7bI&md5=7f56a2a4a23e36d7fe55f722b3f81d16CAS | 25460066PubMed |

Fleming, T. P., Velazquez, M. A., Eckert, J. J., Lucas, E. S., and Watkins, A. J. (2012). Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim. Reprod. Sci. 130, 193–197.
Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zht1ekuw%3D%3D&md5=5b2b1f92f59a2bbef1d5f8597761c480CAS | 22341375PubMed |

Ford, S. P., Hess, B. W., Schwope, M. M., Nijland, M. J., Gilbert, J. S., Vonnahme, K. A., Means, W. J., Han, H., and Nathanielsz, P. W. (2007). Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J. Anim. Sci. 85, 1285–1294.
Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksF2hur8%3D&md5=bc0faed273c20d588cf385d96775c0b6CAS | 17224460PubMed |

Ford, S. P., Zhang, L. R., Zhu, M. J., Miller, M. M., Smith, D. T., Hess, B. W., Moss, G. E., Nathanielsz, P. W., and Nijland, M. J. (2009). Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R835–R843.
Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrtbbJ&md5=d2fbe7e7f406626bf68a29b1719faf92CAS | 19605766PubMed |

Fowden, A. L., Ward, J. W., Wooding, F. P. B., Forhead, A. J., and Constancia, M. (2006). Programming placental nutrient transport capacity. J. Physiol. (Lond.) 572, 5–15.
Programming placental nutrient transport capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1GhtLw%3D&md5=f7dc6f82e9adabd93f12854062d8a3edCAS |

Fowden, A. L., Sferruzzi-Perri, A. N., Coan, P. M., Constancia, M., and Burton, G. J. (2009). Placental efficiency and adaptation: endocrine regulation. J. Physiol. 587, 3459–3472.
Placental efficiency and adaptation: endocrine regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Wrs7s%3D&md5=e2414ef627e4eb811ae056e4fab9bf95CAS | 19451204PubMed |

Franklin, T. B., Russig, H., Weiss, I. C., Graff, J., Linder, N., Michalon, A., Vizi, S., and Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415.
Epigenetic transmission of the impact of early stress across generations.Crossref | GoogleScholarGoogle Scholar | 20673872PubMed |

Fullston, T., Palmer, N. O., Owens, J. A., Mitchell, M., Bakos, H. W., and Lane, M. (2012). Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400.
Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vjvFGhsQ%3D%3D&md5=ce2bb4056a643247746af0573113e06fCAS | 22357767PubMed |

Funston, R. N., Larson, D. M., and Vonnahme, K. A. (2010). Effects of maternal nutrition on conceptus growth and offspring performance: implications for beef cattle production. J. Anim. Sci. 88, E205–E215.
Effects of maternal nutrition on conceptus growth and offspring performance: implications for beef cattle production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslOluw%3D%3D&md5=deddd75e3a5f8acd30f7303023fe4d28CAS | 19820049PubMed |

Gallou-Kabani, C., Vige, A., Gross, M. S., and Junien, C. (2007). Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin. Chem. Lab. Med. 45, 321–327.
Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVWitLk%3D&md5=212f0a0df7d4ea93507190a17b6fd698CAS | 17378726PubMed |

Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669.
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlWgsrg%3D&md5=8afcfb5a905c5074eff388c271535d24CAS | 24728267PubMed |

Gardner, D. S., Pearce, S., Dandrea, J., Walker, R., Ramsay, M. M., Stephenson, T., and Symonds, M. E. (2004). Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep. Hypertension 43, 1290–1296.
Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFSks7o%3D&md5=41eedd1a3f66366284f2fb0604ed6dfdCAS | 15078864PubMed |

Gardner, D. S., Ozanne, S., and Sinclair, A. J. (2009). Effect of the early-life nutritional environment on fecundity and fertility of mammals. Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 3419–3427.
Effect of the early-life nutritional environment on fecundity and fertility of mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MnpsFalsA%3D%3D&md5=2e43f00ba8f7abb480b364aeae04253fCAS | 19833652PubMed |

Ge, Z. J., Luo, S. M., Lin, F., Liang, Q. X., Huang, L., Wei, Y. C., Hou, Y., Han, Z. M., Schatten, H., and Sun, Q. Y. (2014). DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ. Health Perspect. 122, 159–164.
| 24316659PubMed |

Genovese, P., Núñez, M., Pombo, C., and Bielli, A. (2010). Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat. Reprod. Domest. Anim. 45, 233–236.
Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjgs1OktQ%3D%3D&md5=0319b4707d9e667c914418682fbcc87fCAS | 19281598PubMed |

George, L. A., Uthlaut, A. B., Long, N. M., Zhang, L., Ma, Y., Smith, D. T., Nathanielsz, P. W., and Ford, S. P. (2010). Different levels of overnutrition and weight gain during pregnancy have differential effects on fetal growth and organ development. Reprod. Biol. Endocrinol. 8, 75.
Different levels of overnutrition and weight gain during pregnancy have differential effects on fetal growth and organ development.Crossref | GoogleScholarGoogle Scholar | 20576133PubMed |

Gnanalingham, M. G., Mostyn, A., Symonds, M. E., and Stephenson, T. (2005). Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1407–R1415.
Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CntLrP&md5=195c112437f7ccc29d3c4a48ab30e08eCAS | 16002557PubMed |

Goddard, M. E., and Whitelaw, E. (2014). The use of epigenetic phenomena for the improvement of sheep and cattle. Front. Genet. 5, 247.
The use of epigenetic phenomena for the improvement of sheep and cattle.Crossref | GoogleScholarGoogle Scholar | 25191337PubMed |

Gonzalez-Bulnes, A., Ovilo, C., Lopez-Bote, C. J., Astiz, S., Ayuso, M., Perez-Solana, M. L., Sanchez-Sanchez, R., and Torres-Rovira, L. (2012a). Gender-specific early postnatal catch-up growth after intrauterine growth retardation by food restriction in swine with obesity/leptin resistance. Reproduction 144, 269–278.
Gender-specific early postnatal catch-up growth after intrauterine growth retardation by food restriction in swine with obesity/leptin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kksr%2FM&md5=0be59995068edea09b442b11a3a459deCAS | 22692087PubMed |

Gonzalez-Bulnes, A., Torres-Rovira, L., Ovilo, C., Astiz, S., Gomez-Izquierdo, E., Gonzalez-Anover, P., Pallares, P., Perez-Solana, M. L., and Sanchez-Sanchez, R. (2012b). Reproductive, endocrine and metabolic feto-maternal features and placental gene expression in a swine breed with obesity/leptin resistance. Gen. Comp. Endocrinol. 176, 94–101.
Reproductive, endocrine and metabolic feto-maternal features and placental gene expression in a swine breed with obesity/leptin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVeiur8%3D&md5=5f0fa27949aa0a8954024c72c92914dbCAS | 22251656PubMed |

González-Recio, O., Ugarte, E., and Bach, A. (2012). Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model. PLoS One 7, e51816.
Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model.Crossref | GoogleScholarGoogle Scholar | 23284777PubMed |

Goodfellow, L. R., Earl, S., Cooper, C., and Harvey, N. C. (2010). Maternal diet, behaviour and offspring skeletal health. Int. J. Environ. Res. Public Health 7, 1760–1772.
Maternal diet, behaviour and offspring skeletal health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVyku7w%3D&md5=d3beaf25212f339b3fd716f62390b75dCAS | 20617058PubMed |

Greenwood, P. L., and Cafe, L. M. (2007). Prenatal and pre-weaning growth and nutrition of cattle: longterm consequences for beef production. Animal 1, 1283–1296.
Prenatal and pre-weaning growth and nutrition of cattle: longterm consequences for beef production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vpt1Wmtg%3D%3D&md5=ac6fc23670a188246e191e17e6e39421CAS | 22444884PubMed |

Greenwood, P. L., Hunt, A. S., Hermanson, J. W., and Bell, A. W. (2000). Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. J. Anim. Sci. 78, 50–61.
| 1:CAS:528:DC%2BD3cXhtVagurk%3D&md5=b47e31587ddf7a888ac9454fca13992fCAS | 10682802PubMed |

Greenwood, P. J., Thompson, A. N., and Ford, S. P. (2010). Postnatal consequences of the maternal environment and of growth during prenantal life for productivity of ruminants. In ‘Managing the Prenatal Environment to Enhance Livestock Productivity’. (Eds P. Greenwood, A. Bell, P. Vercoe and G. Viljoen.) pp. 3–36. (Springer Science: Dordrecht.)

Gu, L., Liu, H., Gu, X., Boots, C., Moley, K. H., and Wang, Q. (2015). Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell. Mol. Life Sci. 72, 251–271.
Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs12nt7rN&md5=cbb58c9d6a61159c914b44de4b863330CAS | 25280482PubMed |

Guillemin, N., Cassar-Malek, I., Hocquette, J. F., Jurie, C., Micol, D., Listrat, A., Leveziel, H., Renand, G., and Picard, B. (2009). La maitrise de la tendreté de la viande bovine: identification de marqueurs biologiques. Prod. Anim. 22, 331–344.
| 1:CAS:528:DC%2BC3cXit1aqsA%3D%3D&md5=882a523ee5e2d61170ae5f96a125ea45CAS |

Gunn, R. G., Sim, D. A., and Hunter, E. A. (1995). Effects of nutrition in utero and in early life on the subsequent lifetime reproductive performance of Scottish Blackface ewes in two management systems. Anim. Sci. 60, 223–230.
Effects of nutrition in utero and in early life on the subsequent lifetime reproductive performance of Scottish Blackface ewes in two management systems.Crossref | GoogleScholarGoogle Scholar |

Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., Jin, X., Shi, X., Liu, P., Wang, X., Wang, W., Wei, Y., Li, X., Guo, F., Wu, X., Fan, X., Yong, J., Wen, L., Xie, S. X., Tang, F., and Qiao, J. (2014). The DNA methylation landscape of human early embryos. Nature 511, 606–610.
The DNA methylation landscape of human early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ChurbK&md5=1257f3afa4dd277251651fd463d11e06CAS | 25079557PubMed |

Haggarty, P. (2012). Nutrition and the epigenome. Prog. Mol. Biol. Transl. Sci. 108, 427–446.
Nutrition and the epigenome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Sqs77L&md5=e9a5053c9837ffd875a262d6ded05d0aCAS | 22656386PubMed |

Hales, C. N., and Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601.
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zlsVyhuw%3D%3D&md5=42277cde89d4891d9b1a5968a7dd2a9aCAS | 1644236PubMed |

Hales, C. N., and Barker, D. J. (2001). The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20.
The thrifty phenotype hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fot12mug%3D%3D&md5=fba6fa14013dc70b81c8f84724766a22CAS | 11809615PubMed |

Hales, C. N., Barker, D. J., Clark, P. M., Cox, L. J., Fall, C., Osmond, C., and Winter, P. D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303, 1019–1022.
Fetal and infant growth and impaired glucose tolerance at age 64.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2Fmtlakuw%3D%3D&md5=ddc001f5b737227ecbd9c78ccd942fa7CAS | 1954451PubMed |

Haley, C. S. (1995). Livestock QTLs: bringing home the bacon? Trends Genet. 11, 488–492.
Livestock QTLs: bringing home the bacon?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslejsLg%3D&md5=d2ece6410caebc3b8ed6a008d46f8b6cCAS | 8533165PubMed |

Hancock, S. N., Oliver, M. H., McLean, C., Jaquiery, A. L., and Bloomfield, F. H. (2012). Size at birth and adult fat mass in twin sheep are determined in early gestation. J. Physiol. (Lond.) 590, 1273–1285.
Size at birth and adult fat mass in twin sheep are determined in early gestation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383pt1Ojsg%3D%3D&md5=0a553d2935b5e8e1f7c45c62cc80bfc0CAS |

Hanson, M. A., and Gluckman, P. D. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol. Rev. 94, 1027–1076.
Early developmental conditioning of later health and disease: physiology or pathophysiology?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFansbnO&md5=c609cdc11f4e2163b615bcbc08bb25f9CAS | 25287859PubMed |

Hernandez, C. E., Matthews, L. R., Oliver, M. H., Bloomfield, F. H., and Harding, J. E. (2010). Effects of sex, litter size and periconceptional ewe nutrition on offspring behavioural and physiological response to isolation. Physiol. Behav. 101, 588–594.
Effects of sex, litter size and periconceptional ewe nutrition on offspring behavioural and physiological response to isolation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nsLrI&md5=41cf5f504bb4e24360821f5ad0097610CAS | 20826171PubMed |

Herrmann, D., Dahl, J. A., Lucas-Hahn, A., Collas, P., and Niemann, H. (2013). Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics 8, 281–289.
Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVant7c%3D&md5=953e7297b10eb70383bd4d6c238a2b53CAS | 23406883PubMed |

Höglund, J. K., Guldbrandtsen, B., Lund, M. S., and Sahana, G. (2015). Identification of genomic regions associated with female fertility in Danish Jersey using whole genome sequence data. BMC Genet. 16, 60.
Identification of genomic regions associated with female fertility in Danish Jersey using whole genome sequence data.Crossref | GoogleScholarGoogle Scholar | 26036962PubMed |

Houdebine, L. M. (2003). Physiologie de la lactation. In ‘Traité d'obstétrique.’ (Eds D. Cabrol, J. C. Pons and F. Goffinet,). pp. 66–76 (Medecine Sciences Flammarion: Paris.)

Houshdaran, S., Cortessis, V. K., Siegmund, K., Yang, A., Laird, P. W., and Sokol, R. Z. (2007). Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2, e1289.
Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm.Crossref | GoogleScholarGoogle Scholar | 18074014PubMed |

Hovey, R. C., Trott, J. F., and Vonderhaar, B. K. (2002). Establishing a framework for the functional mammary gland: from endocrinology to morphology. J. Mammary Gland Biol. Neoplasia 7, 17–38.
Establishing a framework for the functional mammary gland: from endocrinology to morphology.Crossref | GoogleScholarGoogle Scholar | 12160083PubMed |

Huan, Y. J., Zhu, J., Wang, H. M., Wu, Z. F., Zhang, J. G., Xie, B. T., Li, J. Y., Kong, Q. R., Liu, Z. H., and He, H. B. (2014). Epigenetic modification agents improve genomic methylation reprogramming in porcine cloned embryos. J. Reprod. Dev. 60, 377–382.
Epigenetic modification agents improve genomic methylation reprogramming in porcine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVeitbbO&md5=47b1ece5d08b3db61a94a129b5ae584eCAS | 25047549PubMed |

Ibáñez, L., and de Zegher, F. (2006a). Puberty after prenatal growth restraint. Horm. Res. 65, 112–115.
Puberty after prenatal growth restraint.Crossref | GoogleScholarGoogle Scholar | 16612123PubMed |

Ibáñez, L., and de Zegher, F. (2006b). Puberty and prenatal growth. Mol. Cell. Endocrinol. 254–255, 22–25.
Puberty and prenatal growth.Crossref | GoogleScholarGoogle Scholar | 16757105PubMed |

Jammes, H., and Renard, J.-P. (2010). Epigénétique et construction du phénotype, un enjeu pour les productions animales? Prod. Anim. 23, 23–42.
| 1:CAS:528:DC%2BC3cXpsVGjsL8%3D&md5=bc87f04f54a0d319572e0da3ceae8fcaCAS |

Jansson, T., Aye, I. L., and Goberdhan, D. C. (2012). The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta 33, e23–e29.
The emerging role of mTORC1 signaling in placental nutrient-sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtLzO&md5=de9fcad74562b163ea6aaa1abed59deeCAS | 22687819PubMed |

Jenkins, T. G., and Carrell, D. T. (2012). The sperm epigenome and potential implications for the developing embryo. Reproduction 143, 727–734.
The sperm epigenome and potential implications for the developing embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFahs78%3D&md5=311c1572c22252d1d1110a656ba63f65CAS | 22495887PubMed |

Jimenez-Chillaron, J. C., Isganaitis, E., Charalambous, M., Gesta, S., Pentinat-Pelegrin, T., Faucette, R. R., Otis, J. P., Chow, A., Diaz, R., Ferguson-Smith, A., and Patti, M.-E. (2009). Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468.
Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslertr0%3D&md5=8be4186356eb849919954498ea6164a3CAS | 19017762PubMed |

Jones, H. N., Powell, T. L., and Jansson, T. (2007). Regulation of placental nutrient transport: a review. Placenta 28, 763–774.
Regulation of placental nutrient transport: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVGqtrg%3D&md5=7ed64b54c89ac6ba8244902a41bcad81CAS | 17582493PubMed |

Kelly, R., Macleod, I., Hynd, P., and Greeff, J. (1996). Nutrition during fetal life alters annual wool production and quality in young Merino sheep. Aust. J. Exp. Agric. 36, 259–267.
Nutrition during fetal life alters annual wool production and quality in young Merino sheep.Crossref | GoogleScholarGoogle Scholar |

Kelly, R. W., Greeff, J. C., and Macleod, I. (2006). Lifetime changes in wool production of Merino sheep following differential feeding in fetal and early life. Aust. J. Agric. Res. 57, 867–876.
Lifetime changes in wool production of Merino sheep following differential feeding in fetal and early life.Crossref | GoogleScholarGoogle Scholar |

Kenyon, P. R., and Blair, H. T. (2014). Foetal programming in sheep: effects on production. Small Rumin. Res. 118, 16–30.
Foetal programming in sheep: effects on production.Crossref | GoogleScholarGoogle Scholar |

Kenyon, P. R., van der Linden, D. S., Blair, H. T., Morris, S. T., Jenkinson, C. M. C., Peterson, S. W., Mackenzie, D. D. S., and Firth, E. C. (2011). Effects of dam size and nutritional plane during pregnancy on lamb performance to weaning. Small Rumin. Res. 97, 21–27.
Effects of dam size and nutritional plane during pregnancy on lamb performance to weaning.Crossref | GoogleScholarGoogle Scholar |

Khandaker, G. M., Dibben, C. R. M., and Jones, P. B. (2012). Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring? Obesity Reviews 13, 518–527.
Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zptFyrtg%3D%3D&md5=cf489fd6682672e219e0eac3468998e2CAS | 22188548PubMed |

Khatkar, M. S., Thomson, P. C., Tammen, I., and Raadsma, H. W. (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36, 163–190.
Quantitative trait loci mapping in dairy cattle: review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslygurk%3D&md5=27a79d0daa922366e5d7c369086d3676CAS | 15040897PubMed |

Koch, R. M. (1972). The role of maternal effects in animal breeding: VI. Maternal effects in beef cattle. J. Anim. Sci. 35, 1316–1323.
| 1:STN:280:DyaE3s%2FotFanuw%3D%3D&md5=3626cef96b3adf6270f11667aae7c7a8CAS | 4567219PubMed |

Kotsampasi, B., Balaskas, C., Papadomichelakis, G., and Chadio, S. E. (2009a). Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero. Anim. Reprod. Sci. 114, 135–147.
Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1yqu7c%3D&md5=f0276842a3381bd7f9cc6cdbec4e09abCAS | 18814977PubMed |

Kotsampasi, B., Chadio, S., Papadomichelakis, G., Deligeorgis, S., Kalogiannis, D., Menegatos, I., and Zervas, G. (2009b). Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring. Reprod. Domest. Anim. 44, 677–684.
Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaiurbM&md5=cd252fdcd88b772ba16e68d386218191CAS | 19642222PubMed |

Kouzarides, T. (2007). SnapShot: histone-modifying enzymes. Cell 128, 802.e1–802.e2.
SnapShot: histone-modifying enzymes.Crossref | GoogleScholarGoogle Scholar |

Labrecque, R., Lodde, V., Dieci, C., Tessaro, I., Luciano, A. M., and Sirard, M. A. (2015). Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes. Mol. Reprod. Dev. 82, 450–462.
Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsFynurc%3D&md5=1d03032feb932cd7041a28eb93bb0d98CAS | 25940597PubMed |

Laguna-Barraza, R., Bermejo-Álvarez, P., Ramos-Ibeas, P., de Frutos, C., López-Cardona, A. P., Calle, A., Fernandez-Gonzalez, R., Pericuesta, E., Ramírez, M. A., and Gutierrez-Adan, A. (2013). Sex-specific embryonic origin of postnatal phenotypic variability. Reprod. Fertil. Dev. 25, 38–47.
Sex-specific embryonic origin of postnatal phenotypic variability.Crossref | GoogleScholarGoogle Scholar |

Lambrot, R., Xu, C., Saint-Phar, S., Chountalos, G., Cohen, T., Paquet, M., Suderman, M., Hallett, M., and Kimmins, S. (2013). Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4, 2889.
Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c3lsVymsg%3D%3D&md5=ac308c4535915572406c2110481d5f5aCAS | 24326934PubMed |

Lane, M., Zander-Fox, D. L., Robker, R. L., and McPherson, N. O. (2015). Peri-conception parental obesity, reproductive health, and transgenerational impacts. Trends Endocrinol. Metab. 26, 84–90.
Peri-conception parental obesity, reproductive health, and transgenerational impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWrsLrE&md5=7ed584b3f890ad4c19b766a1dc89b2b9CAS | 25523615PubMed |

Lea, R. G., Andrade, L. P., Rae, M. T., Hannah, L. T., Kyle, C. E., Murray, J. F., Rhind, S. M., and Miller, D. W. (2006). Effects of maternal undernutrition during early pregnancy on apoptosis regulators in the ovine fetal ovary. J. Reprod. Fertil. 131, 113–124.
Effects of maternal undernutrition during early pregnancy on apoptosis regulators in the ovine fetal ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFegsrg%3D&md5=de6e3af6e280f0abded5374b93be0c53CAS |

Lie, S., Morrison, J. L., Wyss, O., Zhang, S., Ozanne, S. E., and McMillen, I. C. (2012). Periconceptional undernutrition differentially alters insulin signalling in skeletal muscle in singleton and twin fetal sheep in late gestation. Reprod. Sci. 19, 263A.

Lie, S., Morrison, J. L., Williams-Wyss, O., Ozanne, S. E., Zhang, S., Walker, S. K., Kleemann, D. O., MacLaughlin, S. M., Roberts, C. T., and McMillen, I. C. (2013). Impact of embryo number and periconceptional undernutrition on factors regulating adipogenesis, lipogenesis, and metabolism in adipose tissue in the sheep fetus. Am. J. Physiol. Endocrinol. Metab. 305, E931–E941.
Impact of embryo number and periconceptional undernutrition on factors regulating adipogenesis, lipogenesis, and metabolism in adipose tissue in the sheep fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslejtbjF&md5=8a6b0c044043ab92dfc3c34acf41f293CAS | 23921136PubMed |

Lie, S., Morrison, J. L., Williams-Wyss, O., Suter, C. M., Humphreys, D. T., Ozanne, S. E., Zhang, S., Maclaughlin, S. M., Kleemann, D. O., Walker, S. K., Roberts, C. T., and McMillen, I. C. (2014). Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am. J. Physiol. Endocrinol. Metab. 306, E1013–E1024.
Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCit7k%3D&md5=b0484a89ee6fa19e80302dabbbb99f21CAS | 24496309PubMed |

Long, N. M., Vonnahme, K. A., Hess, B. W., Nathanielsz, P. W., and Ford, S. P. (2009). Effects of early gestational undernutrition on fetal growth, organ development, and placentomal composition in the bovine. J. Anim. Sci. 87, 1950–1959.
Effects of early gestational undernutrition on fetal growth, organ development, and placentomal composition in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1eju74%3D&md5=9dab25a39bbbfc8ca7c4acff1db02028CAS | 19213703PubMed |

Long, N. M., Prado-Cooper, M. J., Krehbiel, C. R., DeSilva, U., and Wettemann, R. P. (2010). Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle. J. Anim. Sci. 88, 3251–3261.
Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2rtb%2FK&md5=7649630b04fa1833cc1e23a030404992CAS | 20525929PubMed |

Long, N. M., Tousley, C. B., Underwood, K. R., Paisley, S. I., Means, W. J., Hess, B. W., Du, M., and Ford, S. P. (2012). Effects of early- to mid-gestational undernutrition with or without protein supplementation on offspring growth, carcass characteristics, and adipocyte size in beef cattle. J. Anim. Sci. 90, 197–206.
Effects of early- to mid-gestational undernutrition with or without protein supplementation on offspring growth, carcass characteristics, and adipocyte size in beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOitQ%3D%3D&md5=2b42803e04bf7231bed96e744a4ead2cCAS | 21908644PubMed |

MacLaughlin, S. M., Walker, S. K., Roberts, C. T., Kleemann, D. O., and McMillen, I. C. (2005). Periconceptional nutrition and the relationship between maternal body weight changes in the periconceptional period and feto-placental growth in the sheep. J. Physiol. 565, 111–124.
Periconceptional nutrition and the relationship between maternal body weight changes in the periconceptional period and feto-placental growth in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyru7k%3D&md5=bb254d8a6bdaf003565fdf2f8945fd61CAS | 15774513PubMed |

Malau-Aduli, A. E. O., and Holman, W. B. (2015). Molecular genetics-nutrition interactions in ruminant fatty acid metabolism and meat quality. In ‘Molecular and quantitative animal genetics’. (Ed. H. Khatib.) pp. 197–214. (John Wiley & Sons: Hoboken, NJ.)

Maliszewski, A. M., Gadhia, M. M., O’Meara, M. C., Thorn, S. R., Rozance, P. J., and Brown, L. D. (2012). Prolonged infusion of amino acids increases leucine oxidation in fetal sheep. Am. J. Physiol. Endocrinol. Metab. 302, E1483–E1492.
Prolonged infusion of amino acids increases leucine oxidation in fetal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGlsrzP&md5=f2507f27c2c9ecaa7265673c82963840CAS | 22454287PubMed |

Marques, C. J., Carvalho, F., Sousa, M., and Barros, A. (2004). Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702.
Genomic imprinting in disruptive spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktF2ns7w%3D&md5=39a2268e17f29646f6ed9a9094246b50CAS | 15158633PubMed |

Martin, J. L., Vonnahme, K. A., Adams, D. C., Lardy, G. P., and Funston, R. N. (2007). Effects of dam nutrition on growth and reproductive performance of heifer calves. J. Anim. Sci. 85, 841–847.
Effects of dam nutrition on growth and reproductive performance of heifer calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Wktbg%3D&md5=ec10593a21de7bcff31291c5d1627d4bCAS | 17085735PubMed |

Martín, N. P., Kenyon, P. R., Morel, P. C. H., Pain, S. J., Jenkinson, C. M. C., Hutton, P. G., Morris, S. T., Peterson, S. W., Firth, E. C., and Blair, H. T. (2012). Ewe nutrition in early and mid- to late pregnancy has few effects on fetal development. Anim. Prod. Sci. 52, 533–539.
Ewe nutrition in early and mid- to late pregnancy has few effects on fetal development.Crossref | GoogleScholarGoogle Scholar |

Martínez, D., Pentinat, T., Ribó, S., Daviaud, C., Bloks, V. W., Cebrià, J., Villalmanzo, N., Kalko, S. G., Ramón-Krauel, M., Díaz, R., Plösch, T., Tost, J., and Jimenéz-Chillarón, J. C. (2014). In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered LXRA DNA methylation. Cell Metab. 19, 941–951.
In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered LXRA DNA methylation.Crossref | GoogleScholarGoogle Scholar | 24794974PubMed |

Matthiesen, C. F., Blache, D., Thomsen, P. D., and Tauson, A. H. (2010). Feeding mink (Neovison vison) a protein-restricted diet during pregnancy induces higher birth weight and altered hepatic gene expression in the F(2) offspring. Br. J. Nutr. 104, 544–553.
Feeding mink (Neovison vison) a protein-restricted diet during pregnancy induces higher birth weight and altered hepatic gene expression in the F(2) offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVanurnK&md5=177d4f121b98536c8475056ac37e503fCAS | 20334712PubMed |

McCance, R. A. (1976). Critical periods of growth. Proc. Nutr. Soc. 35, 309–313.
Critical periods of growth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s3hsVKrsw%3D%3D&md5=a69f1e1d5b1450a15636dd718b3c9bf7CAS | 800654PubMed |

McCrabb, G. J., Egan, A. R., and Hosking, B. J. (1991). Maternal undernutrition during mid-pregnancy in sheep. Placental size and its relationship to calcium transfer during late pregnancy. Br. J. Nutr. 65, 157–168.
Maternal undernutrition during mid-pregnancy in sheep. Placental size and its relationship to calcium transfer during late pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVyiu7o%3D&md5=806902e52041048085ed55aa9fade17aCAS | 2043601PubMed |

McCrabb, G. J., Egan, A. R., and Hosking, B. J. (1992). Maternal undernutrition during mid-pregnancy in sheep; variable effects on placental growth. J. Agric. Sci. 118, 127–132.
Maternal undernutrition during mid-pregnancy in sheep; variable effects on placental growth.Crossref | GoogleScholarGoogle Scholar |

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.
| 1:CAS:528:DC%2BD3MXjsFemtbY%3D&md5=a3d31a2e2bd5c15508150b585e5bfceeCAS | 11290733PubMed |

Micke, G. C., Sullivan, T. M., Gatford, K. L., Owens, J. A., and Perry, V. E. A. (2010). Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits. Anim. Reprod. Sci. 121, 208–217.
Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hsrrE&md5=cac2feac41f3ae54447527f3abf424b5CAS | 20591585PubMed |

Micke, G. C., Sullivan, T. M., McMillen, I. C., Gentili, S., and Perry, V. E. A. (2011). Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R. Mol. Cell. Endocrinol. 332, 234–241.
Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLfL&md5=3806d957246a010a423caf5dafeb44dcCAS | 21056085PubMed |

Miller, D., Brinkworth, M., and Iles, D. (2010). Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139, 287–301.
Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFKit70%3D&md5=f83a924d1afe6eac8951a3662e5df6c9CAS | 19759174PubMed |

Mishima, Y., Jayasinghe, C. D., Lu, K., Otani, J., Shirakawa, M., Kawakami, T., Kimura, H., Hojo, H., Carlton, P., Tajima, S., and Suetake, I. (2015). Nucleosome compaction facilitates HP1γ binding to methylated H3K9. Nucleic Acids Res , .
Nucleosome compaction facilitates HP1γ binding to methylated H3K9.Crossref | GoogleScholarGoogle Scholar | 26319017PubMed |

Morgan, H. D., Jin, X. L., Li, A., Whitelaw, E., and O’Neill, C. (2008). The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol. Reprod. 79, 618–623.
The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbbN&md5=9095a02de4ad1d7e9a7ec7995e1429adCAS | 18562706PubMed |

Morise, A., Seve, B., Mace, K., Magliola, C., Le Huerou-Luron, I., and Louveau, I. (2011). Growth, body composition and hormonal status of growing pigs exhibiting a normal or small weight at birth and exposed to a neonatal diet enriched in proteins. Br. J. Nutr. 105, 1471–1479.
Growth, body composition and hormonal status of growing pigs exhibiting a normal or small weight at birth and exposed to a neonatal diet enriched in proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Ogu7o%3D&md5=6e55d640698c5be60f017c7328844d48CAS | 21272407PubMed |

Mossa, F., Carter, F., Walsh, S. W., Kenny, D. A., Smith, G. W., Ireland, J. L., Hildebrandt, T. B., Lonergan, P., Ireland, J. J., and Evans, A. C. (2013). Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol. Reprod. 88, 92.
Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring.Crossref | GoogleScholarGoogle Scholar | 23426432PubMed |

Mossa, F., Walsh, S. W., Ireland, J. J., and Evans, A. C. O. (2015). Early nutritional programming and progeny performance: is reproductive success already set at birth? Anim. Front. 5, 18–24.
Early nutritional programming and progeny performance: is reproductive success already set at birth?Crossref | GoogleScholarGoogle Scholar |

Mostyn, A., and Symonds, M. E. (2009). Early programming of adipose tissue function: a large-animal perspective. Proc. Nutr. Soc. 68, 393–400.
Early programming of adipose tissue function: a large-animal perspective.Crossref | GoogleScholarGoogle Scholar | 19719893PubMed |

Myatt, L. (2006). Placental adaptive responses and fetal programming. J. Physiol. 572, 25–30.
Placental adaptive responses and fetal programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1GhtLo%3D&md5=aa97210044679d4759e41056914729a0CAS | 16469781PubMed |

Ng, S.-F., Lin, R. C., Laybutt, D. R., Barres, R., Owens, J. A., and Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966.
Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWlsr%2FF&md5=ca415b4e39fc64cf32472d30bf9682baCAS | 20962845PubMed |

Nissen, P. M., Danielsen, V. O., Jorgensen, P. F., and Oksbjerg, N. (2003). Increased maternal nutrition of sows has no beneficial effects on muscle fiber number or postnatal growth and has no impact on the meat quality of the offspring. J. Anim. Sci. 81, 3018–3027.
| 1:CAS:528:DC%2BD3sXpslSjsro%3D&md5=0a9194be7915cba44ac9c51da41679b0CAS | 14677857PubMed |

Nowak-Imialek, M., Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Lagutina, I., Lemme, E., Lazzari, G., Galli, C., and Niemann, H. (2008). Messenger RNA expression patterns of histone-associated genes in bovine preimplantation embryos derived from different origins. Mol. Reprod. Dev. 75, 731–743.
Messenger RNA expression patterns of histone-associated genes in bovine preimplantation embryos derived from different origins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGhsb4%3D&md5=b1ba19aed181ef4e7bfafa5ac444355dCAS | 18058811PubMed |

Okae, H., Chiba, H., Hiura, H., Hamada, H., Sato, A., Utsunomiya, T., Kikuchi, H., Yoshida, H., Tanaka, A., Suyama, M., and Arima, T. (2014). Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 10, e1004868.
Genome-wide analysis of DNA methylation dynamics during early human development.Crossref | GoogleScholarGoogle Scholar | 25501653PubMed |

Oksbjerg, N., Gondret, F., and Vestergaard, M. (2004). Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest. Anim. Endocrinol. 27, 219–240.
Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvV2rsLc%3D&md5=2d23449115524669139657d2c44aec4fCAS | 15451071PubMed |

Otten, W., Kanitz, E., Tuchscherer, M., Gräbner, M., Nürnberg, G., Bellmann, O., Hennig, U., Rehfeldt, C., and Metges, C. C. (2013). Effects of low and high protein: carbohydrate ratios in the diet of pregnant gilts on maternal cortisol concentrations and the adrenocortical and sympathoadrenal reactivity in their offspring. J. Anim. Sci. 91, 2680–2692.
Effects of low and high protein: carbohydrate ratios in the diet of pregnant gilts on maternal cortisol concentrations and the adrenocortical and sympathoadrenal reactivity in their offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFCrsbs%3D&md5=d72dda92ef85ef77e1d859d9be2cda1fCAS | 23482575PubMed |

Ousey, J. C., Fowden, A. L., Wilsher, S., and Allen, W. R. (2008). The effects of maternal health and body condition on the endocrine responses of neonatal foals. Equine Vet. J. 40, 673–679.
The effects of maternal health and body condition on the endocrine responses of neonatal foals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FptFKnsg%3D%3D&md5=6be4b00fc6371f5ea0359592f4aa75afCAS | 19165937PubMed |

Pala, A., and McCraw, R. (2005). Replacement heifer selection in a beef cattle herd. Am. J. Appl. Sci. 2, 542–544.
Replacement heifer selection in a beef cattle herd.Crossref | GoogleScholarGoogle Scholar |

Paten, A. M., Kenyon, P. R., Lopez-Villalobos, N., Peterson, S. W., Jenkinson, C. M. C., Pain, S. J., and Blair, H. T. (2013). Lactation Biology Symposium: maternal nutrition during early and mid-to-late pregnancy: comparative effects on milk production of twin-born ewe progeny during their first lactation. J. Anim. Sci. 91, 676–684.
Lactation Biology Symposium: maternal nutrition during early and mid-to-late pregnancy: comparative effects on milk production of twin-born ewe progeny during their first lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKnurc%3D&md5=ab7fe2141ed850638d77d1f908d5e36aCAS | 23230109PubMed |

Pembrey, M. E., Bygren, L. O., Kaati, G., Edvinsson, S., Northstone, K., Sjostrom, M., and Golding, J. (2006). Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166.
Sex-specific, male-line transgenerational responses in humans.Crossref | GoogleScholarGoogle Scholar | 16391557PubMed |

Peñagaricano, F., Souza, A. H., Carvalho, P. D., Driver, A. M., Gambra, R., Kropp, J., Hackbart, K. S., Luchini, D., Shaver, R. D., Wiltbank, M. C., and Khatib, H. (2013). Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. PLoS One 8, e72302.
Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 23991086PubMed |

Peugnet, P., Wimel, L., Duchamp, G., Sandersen, C., Camous, S., Guillaume, D., Dahirel, M., Dubois, C., Jouneau, A., Reigner, F., Berthelot, V., Chaffaux, S., Tarrade, A., Serteyn, D., and Chavatte-Palmer, P. (2014). Enhanced or reduced fetal growth induced by embryo transfer into smaller or larger breeds alters post-natal growth and metabolism in pre-weaning horses. PLoS One 9, e102044.
Enhanced or reduced fetal growth induced by embryo transfer into smaller or larger breeds alters post-natal growth and metabolism in pre-weaning horses.Crossref | GoogleScholarGoogle Scholar | 25006665PubMed |

Peugnet, P., Robles, M., Wimel, L., Dubois, C., Dahirel, M., Guillaume, D., Camous, S., Berthelot, V., Richard, E., Sandersen, C., Chaffaux, S., Tarrade, A., Serteyn, D., and Chavatte-Palmer, P. (2015a). Effects of moderate amounts of barley in late pregnancy on growth, glucose metabolism and osteoarticular status of pre-weaning horses. PLoS One 10, e0122596.
Effects of moderate amounts of barley in late pregnancy on growth, glucose metabolism and osteoarticular status of pre-weaning horses.Crossref | GoogleScholarGoogle Scholar | 25875166PubMed |

Peugnet, P., Wimel, L., Tarrade, A., Robles, M., Dubois, C., Serteyn, D., and Chavatte-Palmer, P. (2015b) La santé du futur poulain se prépare dès la gestation. In: ‘41ème Journée de la Recherche Equine’, 18 March 2014, Paris, France. (Eds M. Cressent.) pp. 84–92. (Institut du Cheval et de l’Equitation: Paris.)

Picard, B., Lefaucheur, L., Berri, C., and Duclos, M. J. (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42, 415–431.
Muscle fibre ontogenesis in farm animal species.Crossref | GoogleScholarGoogle Scholar | 12537254PubMed |

Powell, S. E., and Aberle, E. D. (1980). Effects of birth weight on growth and carcass composition of swine. J. Anim. Sci. 50, 860–868.
| 1:STN:280:DyaL3c3islGnug%3D%3D&md5=67eb7a6e8d0b38f97bc2b265a3cb949fCAS | 7390941PubMed |

Purfield, D. C., Bradley, D. G., Evans, R. D., Kearney, F. J., and Berry, D. P. (2015). Genome-wide association study for calving performance using high-density genotypes in dairy and beef cattle. Genet. Sel. Evol. 47, 47.
Genome-wide association study for calving performance using high-density genotypes in dairy and beef cattle.Crossref | GoogleScholarGoogle Scholar | 26065883PubMed |

Radford, E. J., Ito, M., Shi, H., Corish, J. A., Yamazawa, K., Isganaitis, E., Seisenberger, S., Hore, T. A., Reik, W., Erkek, S., Peters, A. H., Patti, M. E., and Ferguson-Smith, A. C. (2014). In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903.
In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism.Crossref | GoogleScholarGoogle Scholar | 25011554PubMed |

Rae, M. T., Palassio, S., Kyle, C. E., Brooks, A. N., Lea, R. G., Miller, D. W., and Rhind, S. M. (2001). Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses. J. Reprod. Fertil. 122, 915–922.
Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWisw%3D%3D&md5=068d023b6050b20e1e5812db3867e25aCAS |

Rae, M. T., Kyle, C. E., Miller, D. W., Hammond, A. J., Brooks, A. N., and Rhind, S. M. (2002a). The effects of undernutrition, in utero, on reproductive function in adult male and female sheep. Anim. Reprod. Sci. 72, 63–71.
The effects of undernutrition, in utero, on reproductive function in adult male and female sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFahsLw%3D&md5=2c817821b329deff87f9703511eda24eCAS | 12106966PubMed |

Rae, M. T., Rhind, S. M., Fowler, P. A., Miller, D. W., Kyle, C. E., and Brooks, A. N. (2002b). Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses. Reproduction 124, 33–39.
Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaks7s%3D&md5=d0414786b9985b3bcf4b7f3cee6dbeb8CAS | 12090916PubMed |

Redmer, D. A., Luther, J. S., Milne, J. S., Aitken, R. P., Johnson, M. L., Borowicz, P. P., Borowicz, M. A., Reynolds, L. P., and Wallace, J. M. (2009). Fetoplacental growth and vascular development in overnourished adolescent sheep at Day 50, 90 and 130 of gestation. Reproduction 137, 749–757.
Fetoplacental growth and vascular development in overnourished adolescent sheep at Day 50, 90 and 130 of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2ntbc%3D&md5=aee31d8b38a71b6c276ecf8f798dabe7CAS | 19164488PubMed |

Rehfeldt, C., and Kuhn, G. (2006). Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J. Anim. Sci. 84, E113–E123.
| 16582082PubMed |

Rehfeldt, C., Lang, I. S., Görs, S., Hennig, U., Kalbe, C., Stabenow, B., Brüssow, K. P., Pfuhl, R., Bellmann, O., Nürnberg, G., Otten, W., and Metges, C. C. (2011). Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth. J. Anim. Sci. 89, 329–341.
Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFSntbs%3D&md5=db75b036486fdcfd58e3312e23f2b20dCAS | 20889684PubMed |

Rehfeldt, C., Stabenow, B., Pfuhl, R., Block, J., Nürnberg, G., Otten, W., Metges, C. C., and Kalbe, C. (2012). Effects of limited and excess protein intakes of pregnant gilts on carcass quality and cellular properties of skeletal muscle and subcutaneous adipose tissue in fattening pigs. J. Anim. Sci. 90, 184–196.
Effects of limited and excess protein intakes of pregnant gilts on carcass quality and cellular properties of skeletal muscle and subcutaneous adipose tissue in fattening pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOitA%3D%3D&md5=aacd97a7408c6128e365c6f05951b909CAS | 21890499PubMed |

Reis e Silva, A. R., Bruno, C., Fleurot, R., Daniel, N., Archilla, C., Peynot, N., Lucci, C. M., Beaujean, N., and Duranthon, V. (2012). Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 7, 440–446.
Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsbzO&md5=c4da02688a615f527c75ee5dc00f0fcfCAS | 22419129PubMed |

Rumball, C. W., Bloomfield, F. H., and Harding, J. E. (2008). Cardiovascular adaptations to pregnancy in sheep and effects of periconceptional undernutrition. Placenta 29, 89–94.
Cardiovascular adaptations to pregnancy in sheep and effects of periconceptional undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FisFKrtA%3D%3D&md5=00e958cf892b99e4707298ac620fbbfcCAS | 17945342PubMed |

Sangalli, J. R., Chiaratti, M. R., De Bem, T. H., de Araujo, R. R., Bressan, F. F., Sampaio, R. V., Perecin, F., Smith, L. C., King, W. A., and Meirelles, F. V. (2014). Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 9, e101022.
Development to term of cloned cattle derived from donor cells treated with valproic acid.Crossref | GoogleScholarGoogle Scholar | 24959750PubMed |

Satterfield, M.C., Coverdale, J.A., and Wu, G.Y. (2010). Review of fetal programming: implications to horse health. In: ‘Proceedings of the Annual Convention of the AAEP’, 4–8 December 2010, Baltimore, MD. pp. 207–214.

Schefers, J. M., and Weigel, K. A. (2012). Genomic selection in dairy cattle: integration of DNAtesting into breeding programs. Anim. Front. 2, 4–9.
Genomic selection in dairy cattle: integration of DNAtesting into breeding programs.Crossref | GoogleScholarGoogle Scholar |

Schinckel, P. G., and Short, B. F. (1961). Influence of nutritional level during pre-natal and early post-natal life on adult fleece and body characters. Aust. J. Agric. Res. 12, 176–202.
Influence of nutritional level during pre-natal and early post-natal life on adult fleece and body characters.Crossref | GoogleScholarGoogle Scholar |

Schoknecht, P. A., Newton, G. R., Weise, D. E., and Pond, W. G. (1994). Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine. Theriogenology 42, 217–226.
Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlCisrw%3D&md5=ee24011eebe0bc01cc89ff74c6f7d419CAS | 16727528PubMed |

Sciascia, Q., Sales, F., van der Linden, D., Wards, N., Oliver, M., Blair, H., and McCoard, S. (2015). Nutritional plane of twin-bearing ewes alters fetal mammary gland biochemical composition and mTOR/MAPK pathway signaling. J. Anim. Sci. 93, 699–708.
Nutritional plane of twin-bearing ewes alters fetal mammary gland biochemical composition and mTOR/MAPK pathway signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Wks7k%3D&md5=014b23cef88013c07317e3ac7fa3d64bCAS | 26020751PubMed |

Shin, J. H., Li, R. W., Gao, Y., Baldwin, R. t., and Li, C. J. (2012). Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells. Funct. Integr. Genomics 12, 119–130.
Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVSkurs%3D&md5=acd114d15b7a3888d915bc08c74e90b3CAS | 22249597PubMed |

Simó-Riudalbas, L., and Esteller, M. (2015). Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br. J. Pharmacol. 172, 2716–2732.
Targeting the histone orthography of cancer: drugs for writers, erasers and readers.Crossref | GoogleScholarGoogle Scholar | 25039449PubMed |

Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA 104, 19 351–19 356.
DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjug%3D%3D&md5=27198a2594d37842d69953e3eb7c8b9aCAS |

Sloboda, D. M., Howie, G. J., Pleasants, A., Gluckman, P. D., and Vickers, M. H. (2009). Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One 4, e6744.
Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat.Crossref | GoogleScholarGoogle Scholar | 19707592PubMed |

Smallwood, S. A., and Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42.
De novo DNA methylation: a germ cell perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2msA%3D%3D&md5=cc34a4c0d513f7bcc2a13d892b27d31dCAS | 22019337PubMed |

Smith, Z. D., Chan, M. M., Humm, K. C., Karnik, R., Mekhoubad, S., Regev, A., Eggan, K., and Meissner, A. (2014). DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615.
DNA methylation dynamics of the human preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ChurfJ&md5=2eeaa2d7b375c64a332d376e37889f84CAS | 25079558PubMed |

Stalker, L. A., Adams, D. C., Klopfenstein, T. J., Feuz, D. M., and Funston, R. N. (2006). Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J. Anim. Sci. 84, 2582–2589.
Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFGku7s%3D&md5=4827594089b0c82878811773dc9af67aCAS | 16908664PubMed |

Steegers-Theunissen, R. P., Twigt, J., Pestinger, V., and Sinclair, K. D. (2013). The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum. Reprod. Update 19, 640–655.
The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1GqurnM&md5=2ad85c89624602a89ddf97ff4a456cd3CAS | 23959022PubMed |

Stickland, N. C. (1978). A quantitative study of muscle development in the bovine foetus (Bos indicus). Anat. Histol. Embryol. 7, 193–205.
A quantitative study of muscle development in the bovine foetus (Bos indicus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FjvFyrtQ%3D%3D&md5=7293d49d3fd575ea29f5635ee295551eCAS | 152066PubMed |

Suchocki, T., and Szyda, J. (2015). Genome-wide association study for semen production traits in Holstein–Friesian bulls. J. Dairy Sci. 98, 5774–5780.
Genome-wide association study for semen production traits in Holstein–Friesian bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVejtLvF&md5=b07f2fd3ce3c07dd12e95801d3ea82cfCAS | 26051317PubMed |

Sui, S., He, B., Jia, Y., Li, R., Cai, D., Li, X., Song, H., Jia, L., and Zhao, R. (2014a). Maternal protein restriction during gestation and lactation programs offspring ovarian steroidogenesis and folliculogenesis in the prepubertal gilts. J. Steroid Biochem. Mol. Biol. 143, 267–276.
Maternal protein restriction during gestation and lactation programs offspring ovarian steroidogenesis and folliculogenesis in the prepubertal gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVaksrfK&md5=8291aca6c94cb5c01639c4663ed62dbbCAS | 24787658PubMed |

Sui, S., Jia, Y., He, B., Li, R., Li, X., Cai, D., Song, H., Zhang, R., and Zhao, R. (2014b). Maternal low-protein diet alters ovarian expression of folliculogenic and steroidogenic genes and their regulatory microRNAs in neonatal piglets. Asian-Australas. J. Anim. Sci. 27, 1695–1704.
Maternal low-protein diet alters ovarian expression of folliculogenic and steroidogenic genes and their regulatory microRNAs in neonatal piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVentrbM&md5=89af87836132bfb923d965fbefc5c11dCAS | 25358362PubMed |

Sullivan, T. M., Micke, G. C., Greer, R. M., Irving-Rodgers, H. F., Rodgers, R. J., and Perry, V. E. A. (2009a). Dietary manipulation of Bos indicus × heifers during gestation affects the reproductive development of their heifer calves. Reprod. Fertil. Dev. 21, 773–784.
Dietary manipulation of Bos indicus × heifers during gestation affects the reproductive development of their heifer calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOhu7Y%3D&md5=8c9658aa40f3b6c1a53ab5aaf9b1a64eCAS | 19567220PubMed |

Sullivan, T. M., Micke, G. C., Magalhaes, R. S., Martin, G. B., Wallace, C. R., Green, J. A., and Perry, V. E. A. (2009b). Dietary protein during gestation affects circulating indicators of placental function and fetal development in heifers. Placenta 30, 348–354.
Dietary protein during gestation affects circulating indicators of placental function and fetal development in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVKrt7g%3D&md5=1d6289f40e3457712900cd3516e3e7d8CAS | 19233467PubMed |

Sullivan, T. M., Micke, G. C., Magalhaes, R. S., Phillips, N. J., and Perry, V. E. A. (2009c). Dietary protein during gestation affects placental development in heifers. Theriogenology 72, 427–438.
Dietary protein during gestation affects placental development in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2nsr4%3D&md5=faab0b4a7d2f839e619bef36aaa483d6CAS | 19540576PubMed |

Summers, A. F., Blair, A. D., and Funston, R. N. (2015a). Impact of supplemental protein source offered to primiparous heifers during gestation on II. Progeny performance and carcass characteristics. J. Anim. Sci. 93, 1871–1880.
Impact of supplemental protein source offered to primiparous heifers during gestation on II. Progeny performance and carcass characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslWru78%3D&md5=9a523f779ffc2099746ef20d847c5b7aCAS | 26020209PubMed |

Summers, A. F., Meyer, T. L., and Funston, R. N. (2015b). Impact of supplemental protein source offered to primiparous heifers during gestation on I. Average daily gain, feed intake, calf birth body weight, and rebreeding in pregnant beef heifers. J. Anim. Sci. 93, 1865–1870.
Impact of supplemental protein source offered to primiparous heifers during gestation on I. Average daily gain, feed intake, calf birth body weight, and rebreeding in pregnant beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslWrsro%3D&md5=d094b1f0a9006320de5a09088b95de9aCAS | 26020208PubMed |

Sun, C., Velazquez, M. A., Marfy-Smith, S., Sheth, B., Cox, A., Johnston, D. A., Smyth, N., and Fleming, T. P. (2014). Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 141, 1140–1150.
Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVGkt7Y%3D&md5=2c880cfb506ebf662c28e7fabc466491CAS | 24504338PubMed |

Suzuki, M. M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476.
DNA methylation landscapes: provocative insights from epigenomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrtL0%3D&md5=a5e86d54c1d1c6e0910131fbd969cd6eCAS | 18463664PubMed |

Symonds, M. E., Gopalakrishnan, G., Bispham, J., Pearce, S., Dandrea, J., Mostyn, A., Ramsay, M. M., and Stephenson, T. (2003). Maternal nutrient restriction during placental growth, programming of fetal adiposity and juvenile blood pressure control. Arch. Physiol. Biochem. 111, 45–52.
Maternal nutrient restriction during placental growth, programming of fetal adiposity and juvenile blood pressure control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1akt7Y%3D&md5=a313e50a6bb4c3ad6b20bef09bcfd4a0CAS | 12715274PubMed |

Symonds, M. E., Sebert, S. P., and Budge, H. (2010). Nutritional regulation of fetal growth and implications for productive life in ruminants. Animal 4, 1075–1083.
Nutritional regulation of fetal growth and implications for productive life in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVajsb0%3D&md5=d867187ac925c37d463e4d977e0a9a11CAS | 22444610PubMed |

Symonds, M. E., Pope, M., Sharkey, D., and Budge, H. (2012). Adipose tissue and fetal programming. Diabetologia 55, 1597–1606.
Adipose tissue and fetal programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1yqsbc%3D&md5=c2980880e2ec6fa90fa329d512cf387dCAS | 22402988PubMed |

Tarrade, A., Rousseau-Ralliard, D., Aubrière, M. C., Peynot, N., Dahirel, M., Bertrand-Michel, J., Aguirre-Lavin, T., Morel, O., Beaujean, N., Duranthon, V., and Chavatte-Palmer, P. (2013). Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model. PLoS One 8, e83458.
Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model.Crossref | GoogleScholarGoogle Scholar | 24386205PubMed |

Tarrade, A., Panchenko, P., Junien, C., and Gabory, A. (2015). Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J. Exp. Biol. 218, 50–58.
Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism.Crossref | GoogleScholarGoogle Scholar | 25568451PubMed |

Thornburg, K. L., O’Tierney, P. F., and Louey, S. (2010). Review: the placenta is a programming agent for cardiovascular disease. Placenta 31, S54–S59.
Review: the placenta is a programming agent for cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 20149453PubMed |

Tischner, M. (2000). Maternal influence on pre- and postnatal growth of foals born after embryo transfer. J. Reprod. Fertil. Suppl. 56, 705–708.
| 20681186PubMed |

Tong, J., Zhu, M. J., Underwood, K. R., Hess, B. W., Ford, S. P., and Du, M. (2008). AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J. Anim. Sci. 86, 1296–1305.
AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslOhs7o%3D&md5=aef8db562b11acfbd0713093e83dca5dCAS | 18344293PubMed |

Tong, J. F., Yan, X., Zhu, M. J., Ford, S. P., Nathanielsz, P. W., and Du, M. (2009). Maternal obesity downregulates myogenesis and β-catenin signaling in fetal skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 296, E917–E924.
Maternal obesity downregulates myogenesis and β-catenin signaling in fetal skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVyhtbs%3D&md5=8f421d02d8340b936a0d379af680d0f5CAS | 19176350PubMed |

Torrens, C., Snelling, T. H., Chau, R., Shanmuganathan, M., Cleal, J. K., Poore, K. R., Noakes, D. E., Poston, L., Hanson, M. A., and Green, L. R. (2009). Effects of pre- and periconceptional undernutrition on arterial function in adult female sheep are vascular bed dependent. Exp. Physiol. 94, 1024–1033.
Effects of pre- and periconceptional undernutrition on arterial function in adult female sheep are vascular bed dependent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWhsb3J&md5=2cd2b8d3a4a106db665f878665d9e8d0CAS | 19561141PubMed |

Torres-Rovira, L., Tarrade, A., Astiz, S., Mourier, E., Perez-Solana, M. L., de la Cruz, P., Gomez-Fidalgo, E., Sanchez-Sanchez, R., Chavatte-Palmer, P., and Gonzalez-Bulnes, A. (2013). Sex and breed-dependent organ development and metabolic responses in foetuses from lean and obese/leptin resistant swine. PLoS One 8, e66728.
Sex and breed-dependent organ development and metabolic responses in foetuses from lean and obese/leptin resistant swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ejurbN&md5=d1f27370951763d8cef4b38ff6743168CAS | 23935823PubMed |

Underwood, K. R., Tong, J. F., Price, P. L., Roberts, A. J., Grings, E. E., Hess, B. W., Means, W. J., and Du, M. (2010). Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers. Meat Sci. 86, 588–593.
Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCrur%2FP&md5=10730aaa2461fa285d8ba2c9cce8ec42CAS | 20659786PubMed |

van Abeelen, A. F., de Rooij, S. R., Osmond, C., Painter, R. C., Veenendaal, M. V., Bossuyt, P. M., Elias, S. G., Grobbee, D. E., van der Schouw, Y. T., Barker, D. J., and Roseboom, T. J. (2011). The sex-specific effects of famine on the association between placental size and later hypertension. Placenta 32, 694–698.
The sex-specific effects of famine on the association between placental size and later hypertension.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjpsF2ltQ%3D%3D&md5=06e904f307dd1ddec8e0aa3f2a51f3bfCAS | 21742377PubMed |

van der Linden, D. S., Kenyon, P. R., Blair, H. T., Lopez-Villalobos, N., Jenkinson, C. M., Peterson, S. W., and Mackenzie, D. D. (2009). Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation. J. Anim. Sci. 87, 3944–3954.
Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhs7bO&md5=0eb550a1f47de7200c630b9d65375f85CAS | 19684261PubMed |

van Montfoort, A. P., Hanssen, L. L., de Sutter, P., Viville, S., Geraedts, J. P., and de Boer, P. (2012). Assisted reproduction treatment and epigenetic inheritance. Hum. Reprod. Update 18, 171–197.
Assisted reproduction treatment and epigenetic inheritance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKrtLY%3D&md5=eaaab3b2eab79e6a7122557b06c13e70CAS | 22267841PubMed |

Veenendaal, M. V. E., Painter, R. C., de Rooij, S. R., Bossuyt, P. M. M., van der Post, J. A. M., Gluckman, P. D., Hanson, M. A., and Roseboom, T. J. (2013). Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120, 548–554.
Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3szhslKgug%3D%3D&md5=592d12743288dea564c66598c96465beCAS |

Velazquez, M. A. (2015). Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest. Anim. Endocrinol. 51, 27–45.
Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSiu77O&md5=66b8004386d8b265544899517a489f27CAS | 25498236PubMed |

Vonnahme, K. A., and Ford, S. P. (2004). Placental vascular endothelial growth factor receptor system mRNA expression in pigs selected for placental efficiency. J. Physiol. 554, 194–201.
Placental vascular endothelial growth factor receptor system mRNA expression in pigs selected for placental efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVCguw%3D%3D&md5=1cae62749f69974e9dd74c004c3973fdCAS | 14678501PubMed |

Vonnahme, K. A., Hess, B. W., Nijland, M. J., Nathanielsz, P. W., and Ford, S. P. (2006). Placentomal differentiation may compensate for maternal nutrient restriction in ewes adapted to harsh range conditions. J. Anim. Sci. 84, 3451–3459.
Placentomal differentiation may compensate for maternal nutrient restriction in ewes adapted to harsh range conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CnurfO&md5=394f24cd3f3fb64e79c1ffec504c314eCAS | 17093240PubMed |

Vonnahme, K. A., Zhu, M. J., Borowicz, P. P., Geary, T. W., Hess, B. W., Reynolds, L. P., Caton, J. S., Means, W. J., and Ford, S. P. (2007). Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome. J. Anim. Sci. 85, 2464–2472.
Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSjtrvO&md5=0d7dab6078a66155523eeb500bf96b1aCAS | 17565057PubMed |

Vonnahme, K. A., Lemley, C. O., Shukla, P., and O’Rourke, S. T. (2013). 2011 and 2012 Early Careers Achievement Awards: placental programming: how the maternal environment can impact placental function. J. Anim. Sci. 91, 2467–2480.
2011 and 2012 Early Careers Achievement Awards: placental programming: how the maternal environment can impact placental function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFCrsrk%3D&md5=23579095f6304af2a39d2dd5a59b8c33CAS | 23307854PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., Leitch, N., and Hay, W. W. (2002). Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1027–R1036.
Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVenu7c%3D&md5=11a8f917be31b45f345cf4376982e84cCAS | 11893606PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., Milne, J. S., and Hay, W. W. (2003). Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep. J. Physiol. (Lond.) 547, 85–94.
Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFSkt74%3D&md5=a1ec61a73b9e099216bfb4b234c555d5CAS |

Wallace, J. M., Milne, J. S., and Aitken, R. P. (2005). The effect of overnourishing singleton-bearing adult ewes on nutrient partitioning to the gravid uterus. Br. J. Nutr. 94, 533–539.
The effect of overnourishing singleton-bearing adult ewes on nutrient partitioning to the gravid uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2ks7vK&md5=f0ca26aedf7125c19f1b4e1b82fcdbbbCAS | 16197577PubMed |

Wallace, J. M., Milne, J. S., Matsuzaki, M., and Aitken, R. P. (2008). Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams. Placenta 29, 718–724.
Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1critFKgsQ%3D%3D&md5=963f45c23f1b8d40854108f7a37f3382CAS | 18579200PubMed |

Walton, A., and Hammond, J. (1938). The maternal effects on growth and conformation in shire horse–shetland pony crosses. Proc. R. Soc. Lond. B Biol. Sci. 125, 311–335.
The maternal effects on growth and conformation in shire horse–shetland pony crosses.Crossref | GoogleScholarGoogle Scholar |

Wang, L., Zhang, J., Duan, J., Gao, X., Zhu, W., Lu, X., Yang, L., Zhang, J., Li, G., Ci, W., Li, W., Zhou, Q., Aluru, N., Tang, F., He, C., Huang, X., and Liu, J. (2014). Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991.
Programming and inheritance of parental DNA methylomes in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFGntb0%3D&md5=757ea1fc9b13b4c3705ef41c19c2e6a7CAS | 24813617PubMed |

Wang, X., Lan, X., Radunz, A. E., and Khatib, H. (2015). Maternal nutrition during pregnancy is associated with differential expression of imprinted genes and DNA methyltranfereases in muscle of beef cattle offspring. J. Anim. Sci. 93, 35–40.
Maternal nutrition during pregnancy is associated with differential expression of imprinted genes and DNA methyltranfereases in muscle of beef cattle offspring.Crossref | GoogleScholarGoogle Scholar | 25568354PubMed |

Watkins, A. J., and Sinclair, K. D. (2014). Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. Heart Circ. Physiol. 306, H1444–H1452.
Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVChsb4%3D&md5=c84036e816b0df0c40628adacc53fa19CAS | 24658019PubMed |

Watkins, A. J., Ursell, E., Panton, R., Papenbrock, T., Hollis, L., Cunningham, C., Wilkins, A., Perry, V. H., Sheth, B., Kwong, W. Y., Eckert, J. J., Wild, A. E., Hanson, M. A., Osmond, C., and Fleming, T. P. (2008a). Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78, 299–306.
Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kru7c%3D&md5=7da58a45068524e2f37eda9bff73707eCAS | 17989357PubMed |

Watkins, A. J., Wilkins, A., Cunningham, C., Perry, V. H., Seet, M. J., Osmond, C., Eckert, J. J., Torrens, C., Cagampang, F. R. A., Cleal, J., Gray, W. P., Hanson, M. A., and Fleming, T. P. (2008b). Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J. Physiol. (Lond.) 586, 2231–2244.
Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFent7Y%3D&md5=97be7b524e438aead5134eb0bbb544feCAS |

Watkins, A. J., Lucas, E. S., and Fleming, T. P. (2010). Impact of the periconceptional environment on the programming of adult disease. J. Dev. Orig. Health Dis. 1, 87–95.
Impact of the periconceptional environment on the programming of adult disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVeitLo%3D&md5=54953e756e83644af106ae5d549930bdCAS | 25143062PubMed |

Watkins, A. J., Lucas, E. S., Wilkins, A., Cagampang, F. R. A., and Fleming, T. P. (2011). Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PLoS One 6, e28745.
Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Wktg%3D%3D&md5=730283811d9aa5b82b7d77cc1162dd10CAS | 22194901PubMed |

Whorwood, C. B., Firth, K. M., Budge, H., and Symonds, M. E. (2001). Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep. Endocrinology 142, 2854–2864.
Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslelsLw%3D&md5=c1b69638a00a9df13c8545de7a251e35CAS | 11416004PubMed |

Williams-Wyss, O., Zhang, S., MacLaughlin, S. M., Kleemann, D., Walker, S. K., Suter, C. M., Cropley, J. E., Morrison, J. L., Roberts, C. T., and McMillen, I. C. (2014). Embryo number and periconceptional undernutrition in the sheep have differential effects on adrenal epigenotype, growth, and development. Am. J. Physiol. Endocrinol. Metab. 307, E141–E150.
Embryo number and periconceptional undernutrition in the sheep have differential effects on adrenal epigenotype, growth, and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ygsbjK&md5=3fa7a6de172e6f35ce19b1d98dbda995CAS | 24844259PubMed |

Wilsher, S., and Allen, W. R. (2006). Effects of a Streptococcus equi infection-mediated nutritional insult during mid-gestation in primiparous thoroughbred fillies. Part 1: placental and fetal development. Equine Vet. J. 38, 549–557.
Effects of a Streptococcus equi infection-mediated nutritional insult during mid-gestation in primiparous thoroughbred fillies. Part 1: placental and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28nos1yqtg%3D%3D&md5=caa8212ffdb14d465f02a132c79236aeCAS | 17124846PubMed |

Wu, G., Pond, W. G., Flynn, S. P., Ott, T. L., and Bazer, F. W. (1998). Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J. Nutr. 128, 2395–2402.
| 1:CAS:528:DyaK1cXotVOrsL8%3D&md5=b3965ae3f8cf7c1e9bee033dd1640848CAS | 9868187PubMed |

Yuan, S., Oliver, D., Schuster, A., Zheng, H., and Yan, W. (2015). Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci. Rep. 5, 9266.
Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosVKnt74%3D&md5=0ca18afaa4f6297ad6e154d23e0fc1ebCAS | 25783852PubMed |

Zamudio, N. M., Chong, S. Y., and O’Bryan, M. K. (2008). Epigenetic regulation in male germ cells. Reproduction 136, 131–146.
Epigenetic regulation in male germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGqtbnL&md5=9be476bc99d794b087734d6342da5ab0CAS | 18515312PubMed |

Zhang, L., Long, N. M., Hein, S. M., Ma, Y., Nathanielsz, P. W., and Ford, S. P. (2011a). Maternal obesity in ewes results in reduced fetal pancreatic beta-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest. Anim. Endocrinol. 40, 30–39.
Maternal obesity in ewes results in reduced fetal pancreatic beta-cell numbers in late gestation and decreased circulating insulin concentration at term.Crossref | GoogleScholarGoogle Scholar | 20933362PubMed |

Zhang, S., Rattanatray, L., McMillen, I. C., Suter, C. M., and Morrison, J. L. (2011b). Periconceptional nutrition and the early programming of a life of obesity or adversity. Prog. Biophys. Mol. Biol. 106, 307–314.
Periconceptional nutrition and the early programming of a life of obesity or adversity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrnvVCqug%3D%3D&md5=e0a898bbe90e28612368a09016c2fbf5CAS | 21168433PubMed |

Zhang, S., Morrison, J. L., Gill, A., Rattanatray, L., MacLaughlin, S. M., Kleemann, D., Walker, S. K., and McMillen, I. C. (2013a). Dietary restriction in the periconceptional period in normal-weight or obese ewes results in increased abundance of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1R) in the absence of changes in ACE or AT1R methylation in the adrenal of the offspring. Reproduction 146, 443–454.
Dietary restriction in the periconceptional period in normal-weight or obese ewes results in increased abundance of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1R) in the absence of changes in ACE or AT1R methylation in the adrenal of the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGht7zI&md5=cf656e3319441f2808db114cd6dfa35dCAS | 24084173PubMed |

Zhang, S., Morrison, J. L., Gill, A., Rattanatray, L., MacLaughlin, S. M., Kleemann, D., Walker, S. K., and McMillen, I. C. (2013b). Maternal dietary restriction during the periconceptional period in normal-weight or obese ewes results in adrenocortical hypertrophy, an up-regulation of the JAK/STAT and down-regulation of the IGF1R signaling pathways in the adrenal of the postnatal lamb. Endocrinology 154, 4650–4662.
Maternal dietary restriction during the periconceptional period in normal-weight or obese ewes results in adrenocortical hypertrophy, an up-regulation of the JAK/STAT and down-regulation of the IGF1R signaling pathways in the adrenal of the postnatal lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2it7fN&md5=0b460563a97fda4b76690e6761125defCAS | 24108072PubMed |

Zhao, J., Hao, Y., Ross, J. W., Spate, L. D., Walters, E. M., Samuel, M. S., Rieke, A., Murphy, C. N., and Prather, R. S. (2010). Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell. Reprogram. 12, 75–83.
Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOjurs%3D&md5=7cfa37b29f36460c261534769dceac18CAS | 20132015PubMed |

Zhou, Q. Y., Fang, M. D., Huang, T. H., Li, C. C., Yu, M., and Zhao, S. H. (2009). Detection of differentially expressed genes between Erhualian and Large White placentas on Day 75 and 90 of gestation. BMC Genomics 10, 337.
Detection of differentially expressed genes between Erhualian and Large White placentas on Day 75 and 90 of gestation.Crossref | GoogleScholarGoogle Scholar | 19630995PubMed |

Zhu, M. J., Ford, S. P., Means, W. J., Hess, B. W., Nathanielsz, P. W., and Du, M. (2006). Maternal nutrient restriction affects properties of skeletal muscle in offspring. J. Physiol. (Lond.) 575, 241–250.
Maternal nutrient restriction affects properties of skeletal muscle in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslaitbo%3D&md5=2e0b46bc760e504922131a5762c0925bCAS |

Zhu, M. J., Du, M., Hess, B. W., Nathanielsz, P. W., and Ford, S. P. (2007). Periconceptional nutrient restriction in the ewe alters MAPK/ERK1/2 and PI3K/Akt growth signaling pathways and vascularity in the placentome. Placenta 28, 1192–1199.
Periconceptional nutrient restriction in the ewe alters MAPK/ERK1/2 and PI3K/Akt growth signaling pathways and vascularity in the placentome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2qtrnF&md5=2ca12163616d19c27da72da7cd104e53CAS | 17586041PubMed |

Zhu, M. J., Du, M., Nijland, M. J., Nathanielsz, P. W., Hess, B. W., Moss, G. E., and Ford, S. P. (2009). Down-regulation of growth signaling pathways linked to a reduced cotyledonary vascularity in placentomes of over-nourished, obese pregnant ewes. Placenta 30, 405–410.
Down-regulation of growth signaling pathways linked to a reduced cotyledonary vascularity in placentomes of over-nourished, obese pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFelsro%3D&md5=85dfbf0c58d4472a20d8f2eebd0aaf4fCAS | 19268361PubMed |