Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Livestock in biomedical research: history, current status and future prospective

Irina A. Polejaeva A D , Heloisa M. Rutigliano A B and Kevin D. Wells C
+ Author Affiliations
- Author Affiliations

A Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA.

B School of Veterinary Medicine, Utah State University, Logan, UT 84322, USA.

C Division of Animal Sciences, Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA.

D Corresponding author. Email: irina.polejaeva@usu.edu

Reproduction, Fertility and Development 28(2) 112-124 https://doi.org/10.1071/RD15343
Published: 3 December 2015

Abstract

Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.

Additional keywords: genetically engineered, genome editing, livestock animal models, transgenic technology.


References

Abe, Y., Isoyama, T., Saito, I., Shi, W., Inoue, Y., Ishii, K., Nakagawa, H., Ono, T., Ono, M., and Imachi, K. (2011). Results of animal experiments with the fourth model of the undulation pump total artificial heart. Artif. Organs 35, 781–790.
Results of animal experiments with the fourth model of the undulation pump total artificial heart.Crossref | GoogleScholarGoogle Scholar | 21843293PubMed |

Abu-Amero, S., Monk, D., Apostolidou, S., Stanier, P., and Moore, G. (2006). Imprinted genes and their role in human fetal growth. Cytogenet. Genome Res. 113, 262–270.
Imprinted genes and their role in human fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVSquro%3D&md5=5c76e5f0d4756a84bf1ee0ca001aa411CAS | 16575189PubMed |

Ahern, B. J., Parvizi, J., Boston, R., and Schaer, T. P. (2009). Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17, 705–713.
Preclinical animal models in single site cartilage defect testing: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MzlsVKntg%3D%3D&md5=ec9c16e6b276150261a23a1ef5fd3666CAS | 19101179PubMed |

Al-Mashhadi, R. H., Sorensen, C. B., Kragh, P. M., Christoffersen, C., Mortensen, M. B., Tolbod, L. P., Thim, T., Du, Y. T., Li, J., Liu, Y., Moldt, B., Schmidt, M., Vajta, G., Larsen, T., Purup, S., Bolund, L., Nielsen, L. B., Callesen, H., Falk, E., Mikkelsen, J. G., and Bentzon, J. F. (2013). Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med. 5, 166ra1.
| 23283366PubMed |

Allessie, M. A. (1998). Atrial electrophysiologic remodeling: another vicious circle? J. Cardiovasc. Electrophysiol. 9, 1378–1393.
Atrial electrophysiologic remodeling: another vicious circle?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FosVyrsQ%3D%3D&md5=7bafa4af20f65a3079bb4232f489e221CAS | 9869538PubMed |

Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overstrom, E. W., and Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
Production of goats by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFWrsbY%3D&md5=93cb13cd2d050dd80cdb25060ce9056eCAS | 10331804PubMed |

Bähr, A., and Wolf, E. (2012). Domestic animal models for biomedical research. Reprod. Domest. Anim. 47, 59–71.
Domestic animal models for biomedical research.Crossref | GoogleScholarGoogle Scholar | 22827351PubMed |

Bainbridge, D. R. J. (2000). Evolution of mammalian pregnancy in the presence of the maternal immune system. Rev. Reprod. 5, 67–74.
Evolution of mammalian pregnancy in the presence of the maternal immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu74%3D&md5=02bc6e4eb5a5019af1feb65406208247CAS |

Barreto, R. S. N., Bressan, F. F., Oiveira, L. J., Pereira, F. T. V., Perecin, F., Ambrosio, C. E., Meirelles, F. V., and Miglino, M. A. (2011). Gene expression in placentation of farm animals: an overview of gene function during development. Theriogenology 76, 589–597.
Gene expression in placentation of farm animals: an overview of gene function during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFyhsbw%3D&md5=08d7a366591c7a41aca548232272fc9dCAS |

Bauer, A., McDonald, A. D., and Donahue, J. K. (2004). Pathophysiological findings in a model of persistent atrial fibrillation and severe congestive heart failure. Cardiovasc. Res. 61, 764–770.
Pathophysiological findings in a model of persistent atrial fibrillation and severe congestive heart failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVOltL8%3D&md5=8665246632046e9884ddfaa017ad50ddCAS | 14985073PubMed |

Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H. D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl Acad. Sci. USA 106, 5681–5686.
The endometrium responds differently to cloned versus fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurk%3D&md5=5ceee190c3790ff9887da7cd8326f3d1CAS | 19307558PubMed |

Behboodi, E., Bondareva, A., Begin, I., Rao, K., Neveu, N., Pierson, T., Wylie, C., Piero, F. D., Huang, Y. J., Zeng, W., Tanco, V., Baldassarre, H., Karatzas, C. N., and Dobrinski, I. (2011). Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol. Reprod. Dev. 78, 202–211.
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKms7s%3D&md5=ed529ae72f2c3d4faf775531e0c0a64dCAS | 21387453PubMed |

Berg, P., and Mertz, J. E. (2010). Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184, 9–17.
Personal reflections on the origins and emergence of recombinant DNA technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOntbfP&md5=f732f6f26efafe696dec9b93a7695dd6CAS | 20061565PubMed |

Berg, P., Baltimore, D., Boyer, H. W., Cohen, S. N., Davis, R. W., Hogness, D. S., Nathans, D., Roblin, R., Watson, J. D., Weissman, S., and Zinder, N. D. (1974). Letter: potential biohazards of recombinant DNA molecules. Science 185, 303.
Letter: potential biohazards of recombinant DNA molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXht1CksQ%3D%3D&md5=6e83d5ce707784ad083e673557a9eef7CAS | 11661080PubMed |

Berg, P., Baltimore, D., Brenner, S., Roblin, R. O., and Singer, M. F. (1975). Summary statement of the Asilomar conference on recombinant DNA molecules. Proc. Natl Acad. Sci. USA 72, 1981–1984.
Summary statement of the Asilomar conference on recombinant DNA molecules.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7ns1yltg%3D%3D&md5=d185a810924a15d27f3fe328c3bd0f45CAS | 806076PubMed |

Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfister-Genskow, M., Strelchenko, N., Voelker, G., Watt, S., Thompson, S., and Bishop, M. (2000). Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–1059.
Production of cloned pigs from in vitro systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlOhtr0%3D&md5=053d9e14d7e4f0f2d4237497586a5907CAS | 11017042PubMed |

Bielinska, M., Parviainen, H., Kiiveri, S., Heikinheimo, M., and Wilson, D. B. (2009). Origin and molecular pathology of adrenocortical neoplasms. Vet. Pathol. 46, 194–210.
Origin and molecular pathology of adrenocortical neoplasms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFCmtr4%3D&md5=621950ba538e24b0ba7894b5f0878c1aCAS | 19261630PubMed |

Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984). Formation of germ-line chimeras from embryo-derived teratocarcinoma cell-lines. Nature 309, 255–256.
Formation of germ-line chimeras from embryo-derived teratocarcinoma cell-lines.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7ptFGntQ%3D%3D&md5=79d6bb4857126a9f8cce6fec31059404CAS | 6717601PubMed |

Brenowitz, E. A., and Zakon, H. H. (2015). Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci. 38, 273–278.
Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1OrtL8%3D&md5=4375dc19143ba9fa2a5926e024d6dd5aCAS | 25800324PubMed |

Brevini, T. A., Pennarossa, G., Attanasio, L., Vanelli, A., Gasparrini, B., and Gandolfi, F. (2010). Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. 6, 484–495.
Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCnt7bL&md5=fb8b7ae3396c84154671648ec4ff66b5CAS | 20407852PubMed |

Campbell, K. H. S., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66.
Sheep cloned by nuclear transfer from a cultured cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFeisLY%3D&md5=100eb9601c9027f171ec3a4bb4ea0adcCAS |

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B., and Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17 382–17 387.
Efficient TALEN-mediated gene knockout in livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltL3K&md5=a995b98fc92779747087dd8ca5eed5f7CAS |

Carroll, D. (2013). Staying on target with CRISPR-Cas. Nat. Biotechnol. 31, 807–809.
Staying on target with CRISPR-Cas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSrsr%2FF&md5=b6cffece649579e1398db339ecd0d163CAS | 24022156PubMed |

Centers for Disease Control and Prevention (2013). ‘CDC Fertility Clinic Success Rates Report.’ Available at: http://www.cdc.gov/reproductivehealth/Infertility/PDF/DRH_NAP_Final_508.pdf [verified 11 July 2015].

Chavatte-Palmer, P., Heyman, Y., Richard, C., Monget, P., LeBourhis, D., Kann, G., Chilliard, Y., Vignon, X., and Renard, J. P. (2002). Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol. Reprod. 66, 1596–1603.
Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegtb4%3D&md5=23ccc19e296b492dcfefca1844effe19CAS | 12021036PubMed |

Chen, L. R., Shiue, Y. L., Bertolini, L., Medrano, J. F., BonDurant, R. H., and Anderson, G. B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195–212.
Establishment of pluripotent cell lines from porcine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFKqsrY%3D&md5=d590ababe5432901c3ec96876e1be0f2CAS | 10734388PubMed |

Chen, Z., Robbins, K. M., Wells, K. D., and Rivera, R. M. (2013). Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann. Epigenetics 8, 591–601.
Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWksrw%3D&md5=d1d94351dad81ba703774c99c3255e9cCAS | 23751783PubMed |

Chen, Z., Hagen, D. E., Elsik, C. G., Ji, T., Morris, C. J., Moon, L. E., and Rivera, R. M. (2015). Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc. Natl Acad. Sci. USA 112, 4618–4623.
Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOntLs%3D&md5=317abb2b9c9718abb5bb3a90cd187004CAS | 25825726PubMed |

Chieppa, M. N., Perota, A., Corona, C., Grindatto, A., Lagutina, I., Costassa, E. V., Lazzari, G., Colleoni, S., Duchi, R., Lucchini, F., Caramelli, M., Bendotti, C., Galli, C., and Casalone, C. (2014). Modeling amyotrophic lateral sclerosis in hSOD1(G93A) transgenic swine. Neurodegener. Dis. 13, 246–254.
| 1:CAS:528:DC%2BC2cXnslyqtrw%3D&md5=bebf4bc8a2be4ea09da66ee28fc665a1CAS | 24157939PubMed |

Choufani, S., Shuman, C., and Weksberg, R. (2010). Beckwith–Wiedemann syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 343–354.
Beckwith–Wiedemann syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKqsr7J&md5=7b3b4cf6f4ad762eb8f2c9246bbdb38cCAS | 20803657PubMed |

Cibelli, J. B., Stice, S. L., Kane, J. J., Golueke, P. G., Jerry, J., Dickinson, E. S., Blackwell, C., Gao, X. Y., de Leon, A. P., and Robl, J. M. (1998). Bovine chimeric offspring produced by transgenic embryonic stem cells generated from somatic cell nuclear transfer embryos. Theriogenology 49, 236.
Bovine chimeric offspring produced by transgenic embryonic stem cells generated from somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar |

Clark, A. J., Burl, S., Denning, C., and Dickinson, P. (2000). Gene targeting in livestock: a preview. Transgenic Res. 9, 263–275.
Gene targeting in livestock: a preview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVajtLo%3D&md5=95178ee7610dff8941e95fde7fd9d2c5CAS | 11131006PubMed |

Cohen, S. N., Chang, A. C., Boyer, H. W., and Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244.
Construction of biologically functional bacterial plasmids in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksFGgug%3D%3D&md5=558185c7732c8f67166b0280e9929e7dCAS | 4594039PubMed |

Constant, F., Guillomot, M., Heyman, Y., Vignon, X., Laigre, P., Servely, J. L., Renard, J. P., and Chavatte-Palmer, P. (2006). Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol. Reprod. 75, 122–130.
Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlyisbs%3D&md5=b9c016bd22df697ca82cfa2c69cc8533CAS | 16571872PubMed |

Dai, Y., Vaught, T. D., Boone, J., Chen, S. H., Phelps, C. J., Ball, S., Monahan, J. A., Jobst, P. M., McCreath, K. J., Lamborn, A. E., Cowell-Lucero, J. L., Wells, K. D., Colman, A., Polejaeva, I. A., and Ayares, D. L. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255.
Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjtrs%3D&md5=22af6626f31a23ca1b9b6ebd1b664362CAS | 11875425PubMed |

Davies, C. J., Fisher, P. J., and Schlafer, D. H. (2000). Temporal and regional regulation of major histocompatibility complex class I expression at the bovine uterine/placental interface. Placenta 21, 194–202.
Temporal and regional regulation of major histocompatibility complex class I expression at the bovine uterine/placental interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVamtrw%3D&md5=7c0685a0d4845e18a5b59fecba95d982CAS | 10736242PubMed |

Davies, C. J., Hill, J. R., Edwards, J. L., Schrick, F. N., Fisher, P. J., Eldridge, J. A., and Schlafer, D. H. (2004). Major histocompatibility antigen expression on the bovine placenta: its relationship to abnormal pregnancies and retained placenta. Anim. Reprod. Sci. 82–83, 267–280.
Major histocompatibility antigen expression on the bovine placenta: its relationship to abnormal pregnancies and retained placenta.Crossref | GoogleScholarGoogle Scholar | 15271459PubMed |

Davis, B. T., Wang, X. J., Rohret, J. A., Struzynski, J. T., Merricks, E. P., Bellinger, D. A., Rohret, F. A., Nichols, T. C., and Rogers, C. S. (2014). Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 9, e93457.
| 24691380PubMed |

DeBaun, M. R., Niemitz, E. L., and Feinberg, A. P. (2003). Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72, 156–160.
Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1ygug%3D%3D&md5=7ca01c0685aa0ebf02f9b20ab89fbbbbCAS | 12439823PubMed |

Denayer, T., Stöhr, T., and Van Roy, M. (2014). Animal models in translational medicine: validation and prediction. New Horiz. Transl. Med. 2, 5–11.
Animal models in translational medicine: validation and prediction.Crossref | GoogleScholarGoogle Scholar |

Derscheid, R. J., and Ackermann, M. R. (2012). Perinatal lamb model of respiratory syncytial virus (RSV) infection. Viruses 4, 2359–2378.
Perinatal lamb model of respiratory syncytial virus (RSV) infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSrtrrO&md5=cbdfa05bfb6b96c9d3b92f9139b0f320CAS | 23202468PubMed |

Dosdall, D. J., Ranjan, R., Higuchi, K., Kholmovski, E., Angel, N., Li, L., MacLeod, R., Norlund, L., Olsen, A., Davies, C. J., and Marrouche, N. F. (2013). Chronic atrial fibrillation causes left ventricular dysfunction in dogs but not goats: experience with dogs, goats, and pigs. Am. J. Physiol. Heart Circ. Physiol. 305, H725–H731.
Chronic atrial fibrillation causes left ventricular dysfunction in dogs but not goats: experience with dogs, goats, and pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SqsbfO&md5=c32fad60c041ab1c70022ca08b8b8261CAS | 23812387PubMed |

Edwards, J. L., Schrick, F. N., McCracken, M. D., van Amstel, S. R., Hopkins, F. M., Welborn, M. G., and Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113–123.
Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szhslaltA%3D%3D&md5=065c94b7fb4fbe05c9d27a6bba5e185fCAS | 12846674PubMed |

Erlebacher, A. (2013). Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol. 13, 23–33.
Mechanisms of T cell tolerance towards the allogeneic fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVekt7nF&md5=50199ee99e4995050af319ef3a6670a5CAS | 23237963PubMed |

Evans, A. C. O. (2003). Characteristics of ovarian follicle development in domestic animals. Reprod. Domest. Anim. 38, 240–246.
Characteristics of ovarian follicle development in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svis1Srsg%3D%3D&md5=21518cc3cabbde7b7f83563af5c48749CAS |

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
Establishment in culture of pluripotential cells from mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3itV2qsg%3D%3D&md5=53e8a1254021955c54e881d5472d75f8CAS | 7242681PubMed |

Fasouliotis, S. J., and Schenker, J. G. (2003). Failures in assisted reproductive technology: an overview. Eur. J. Obstet. Gynecol. Reprod. Biol. 107, 4–18.
Failures in assisted reproductive technology: an overview.Crossref | GoogleScholarGoogle Scholar | 12593887PubMed |

Fedorova, L., Gatto-Weis, C., Smaili, S., Khurshid, N., Shapiro, J. I., Malhotra, D., and Horrigan, T. (2012). Down-regulation of the transcription factor snail in the placentas of patients with preeclampsia and in a rat model of preeclampsia. Reprod. Biol. Endocrinol. 10, 15.
Down-regulation of the transcription factor snail in the placentas of patients with preeclampsia and in a rat model of preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVanu74%3D&md5=440ae31784d141fbf4ead1a61bdc0bc9CAS | 22360878PubMed |

Fletcher, C. J., Roberts, C. T., Hartwich, K. M., Walker, S. K., and McMillen, I. C. (2007). Somatic cell nuclear transfer in the sheep induces placental defects that likely precede fetal demise. Reproduction 133, 243–255.
Somatic cell nuclear transfer in the sheep induces placental defects that likely precede fetal demise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1aisrg%3D&md5=a00d8500b1f56117f15d194762c90bd3CAS | 17244750PubMed |

Flisikowska, T., Kind, A., and Schnieke, A. (2014). Genetically modified pigs to model human diseases. J. Appl. Genet. 55, 53–64.
Genetically modified pigs to model human diseases.Crossref | GoogleScholarGoogle Scholar | 24234401PubMed |

Funakoshi, T., Schmid, T., Hsu, H. P., and Spector, M. (2008). Lubricin distribution in the goat infraspinatus tendon: a basis for interfascicular lubrication. J. Bone Joint Surg. Am. 90, 803–814.
Lubricin distribution in the goat infraspinatus tendon: a basis for interfascicular lubrication.Crossref | GoogleScholarGoogle Scholar | 18381319PubMed |

Galli, C., Lazzari, G., Flechon, J. E., and Moor, R. M. (1994). Embryonic stem cells in farm animals. Zygote 2, 385–389.
Embryonic stem cells in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283msVymug%3D%3D&md5=ca29bffb1f780ebfb0452f766cbcee78CAS | 8665176PubMed |

Gerrity, R. G., Natarajan, R., Nadler, J. L., and Kimsey, T. (2001). Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50, 1654–1665.
Diabetes-induced accelerated atherosclerosis in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWiu7s%3D&md5=0210053c8bed882e0b8890630d4dbc8fCAS | 11423488PubMed |

Gong, J., Wang, Z., Polejaeva, I., Salgia, R., Kao, C. M., Chen, C. T., Chen, G., and Chen, L. (2014). Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells. PLoS One 9, e90059.
Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.Crossref | GoogleScholarGoogle Scholar | 24594684PubMed |

Halliday, J., Oke, K., Breheny, S., Algar, E., and Amor, D. J. (2004). Beckwith–Wiedemann syndrome and IVF: a case-control study. Am. J. Hum. Genet. 75, 526–528.
Beckwith–Wiedemann syndrome and IVF: a case-control study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Wgtbw%3D&md5=1b8c9b07880e559ec7aaacd13cae9d34CAS | 15284956PubMed |

Hammer, R. E., Pursel, V. G., Rexroad, C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D., and Brinster, R. L. (1985). Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683.
Production of transgenic rabbits, sheep and pigs by microinjection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvF2lsLs%3D&md5=412a634357e06bcea4a7925b978ac144CAS | 3892305PubMed |

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., and McKusick, V. A. (2005). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517.
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVektA%3D%3D&md5=8c33255f03f2ff1ffbdb41ab4e322e24CAS | 15608251PubMed |

Harris, A. (1997). Towards an ovine model of cystic fibrosis. Hum. Mol. Genet. 6, 2191–2193.
Towards an ovine model of cystic fibrosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotFSlu7Y%3D&md5=fd131555aeddbd9ea47043022e1bcc20CAS | 9361022PubMed |

Herath, S., Dobson, H., Bryant, C. E., and Sheldon, I. M. (2006). Use of the cow as a large animal model of uterine infection and immunity. J. Reprod. Immunol. 69, 13–22.
Use of the cow as a large animal model of uterine infection and immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnslyktg%3D%3D&md5=68111f3c6914d20f3a9285b94a487e6bCAS | 16386311PubMed |

Hill, J. R., Burghardt, R. C., Jones, K., Long, C. R., Looney, C. R., Shin, T., Spencer, T. E., Thompson, J. A., Winger, Q. A., and Westhusin, M. E. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtL4%3D&md5=101d2caf79ec39f64bca3e4621dd50abCAS | 11090450PubMed |

Hill, J. R., Schlafer, D. H., Fisher, P. J., and Davies, C. J. (2002). Abnormal expression of trophoblast major histocompatibility complex class I antigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response. Biol. Reprod. 67, 55–63.
Abnormal expression of trophoblast major histocompatibility complex class I antigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itrc%3D&md5=9faa10863558072326effbbe992e7f9fCAS | 12079999PubMed |

Hori, N., Nagai, M., Hirayama, M., Hirai, T., Matsuda, K., Hayashi, M., Tanaka, T., Ozawa, T., and Horike, S. (2010). Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim. Reprod. Sci. 122, 303–312.
Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahs7vP&md5=cad770742a4fe04d54f61dc37d3d5726CAS | 21035970PubMed |

Hotchkiss, R. S., and Opal, S. (2010). Immunotherapy for sepsis: a new approach against an ancient foe. N. Engl. J. Med. 363, 87–89.
Immunotherapy for sepsis: a new approach against an ancient foe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslyjt78%3D&md5=cc8045e48959148ac194117df9f05144CAS | 20592301PubMed |

Hotchkiss, R. S., Coopersmith, C. M., McDunn, J. E., and Ferguson, T. A. (2009). The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15, 496–497.
The sepsis seesaw: tilting toward immunosuppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsF2ks7w%3D&md5=999436a9cf69c3eb3388368d51919140CAS | 19424209PubMed |

Huang, J., Guo, X. G., Fan, N. N., Song, J., Zhao, B. T., Ouyang, Z., Liu, Z., Zhao, Y., Yan, Q. M., Yi, X. L., Schambach, A., Frampton, J., Esteban, M. A., Yang, D. S., Yang, H. Q., and Lai, L. X. (2014). RAG1/2 knockout pigs with severe combined immunodeficiency. J. Immunol. 193, 1496–1503.
RAG1/2 knockout pigs with severe combined immunodeficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqs7%2FO&md5=9ecbda8262fc638a5143dce2f839779aCAS | 24973446PubMed |

Inuzuka, H., Nishizawa, H., Inagaki, A., Suzuki, M., Ota, S., Miyamura, H., Miyazaki, J., Sekiya, T., Kurahashi, H., and Udagawa, Y. (2013). Decreased expression of apelin in placentas from severe pre-eclampsia patients. Hypertens. Pregnancy 32, 410–421.
Decreased expression of apelin in placentas from severe pre-eclampsia patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFerurrF&md5=520cf523faddc5c7516b19b39579782aCAS | 23844873PubMed |

Jackson, R. A., Gibson, K. A., Wu, Y. W., and Croughan, M. S. (2004). Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet. Gynecol. 103, 551–563.
Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 14990421PubMed |

Kirschvink, N., and Reinhold, P. (2008). Use of alternative animals as asthma models. Curr. Drug Targets 9, 470–484.
Use of alternative animals as asthma models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFals7s%3D&md5=797521a2c8261331c227d654c771a244CAS | 18537586PubMed |

Klymiuk, N., Mundhenk, L., Kraehe, K., Wuensch, A., Plog, S., Emrich, D., Langenmayer, M. C., Stehr, M., Holzinger, A., Kroner, C., Richter, A., Kessler, B., Kurome, M., Eddicks, M., Nagashima, H., Heinritzi, K., Gruber, A. D., and Wolf, E. (2012). Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Mol. Med. (Berl) 90, 597–608.
Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12qurc%3D&md5=41996d8754c101fa0f3c8a164323f24cCAS | 22170306PubMed |

Klymiuk, N., Blutke, A., Graf, A., Krause, S., Burkhardt, K., Wuensch, A., Krebs, S., Kessler, B., Zakhartchenko, V., Kurome, M., Kemter, E., Nagashima, H., Schoser, B., Herbach, N., Blum, H., Wanke, R., Aartsma-Rus, A., Thirion, C., Lochmuller, H., Walter, M. C., and Wolf, E. (2013). Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum. Mol. Genet. 22, 4368–4382.
Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SltbrI&md5=ab4b931d5e716472b8e605617248b48bCAS | 23784375PubMed |

Knollmann, B. C., and Roden, D. M. (2008). A genetic framework for improving arrhythmia therapy. Nature 451, 929–936.
A genetic framework for improving arrhythmia therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ynsbs%3D&md5=427916b639b325f98be7335264767a4cCAS | 18288182PubMed |

Kotze, D., Kruger, T. F., Lombard, C., Padayachee, T., Keskintepe, L., and Sher, G. (2013). The effect of the biochemical marker soluble human leukocyte antigen G on pregnancy outcome in assisted reproductive technology: a multicenter study. Fertil. Steril. 100, 1303–1309.
The effect of the biochemical marker soluble human leukocyte antigen G on pregnancy outcome in assisted reproductive technology: a multicenter study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlClt7nK&md5=27b9e2e2322b3bf3ede6d46e82f65a6bCAS | 23993930PubMed |

Kraft, T. W., Allen, D. E., Petters, R. M., Hao, Y., Peng, Y. W., and Wong, F. (2005). Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol. Vis. 11, 1246–1256.
| 1:CAS:528:DC%2BD28XitFels70%3D&md5=116c41ce8f1336e5a8aa487aacce2343CAS | 16402026PubMed |

Laible, G., Wei, J. W., and Wagner, S. (2015). Improving livestock for agriculture: technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol. J. 10, 109–120.
Improving livestock for agriculture: technological progress from random transgenesis to precision genome editing heralds a new era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2nsr7E&md5=5d8fc263910ab530a42734568f8cf4dfCAS | 25515661PubMed |

Lairmore, M. D., and Khanna, C. (2014). Naturally occurring diseases in animals: contributions to translational medicine introduction. ILAR J. 55, 1–3.
Naturally occurring diseases in animals: contributions to translational medicine introduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFGjsr0%3D&md5=c0ed9c0c2f7a466a0ba0b62d6bcc2405CAS | 24936026PubMed |

Le Bouteiller, P., and Sargent, I. L. (2000). HLA class I molecules in the placenta: which ones, where and what for? A workshop report. Placenta 21, S93–S96.
HLA class I molecules in the placenta: which ones, where and what for? A workshop report.Crossref | GoogleScholarGoogle Scholar | 10831131PubMed |

Ledford, H. (2011). Translational research: 4 ways to fix the clinical trial. Nature 477, 526–528.
Translational research: 4 ways to fix the clinical trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CjsrvL&md5=073b00de1163d28074061e4c23e5abbaCAS | 21956311PubMed |

Lee, K., Kwon, D. N., Ezashi, T., Choi, Y. J., Park, C., Ericsson, A. C., Brown, A. N., Samuel, M. S., Park, K. W., Walters, E. M., Kim, D. Y., Kim, J. H., Franklin, C. L., Murphy, C. N., Roberts, R. M., Prather, R. S., and Kim, J. H. (2014). Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc. Natl Acad. Sci. USA 111, 7260–7265.
Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVWrtb4%3D&md5=ac8941192eabacb26f55615b9dcfe68cCAS | 24799706PubMed |

Leuchs, S., Saalfrank, A., Merkl, C., Flisikowska, T., Edlinger, M., Durkovic, M., Rezaei, N., Kurome, M., Zakhartchenko, V., Kessler, B., Flisikowski, K., Kind, A., Wolf, E., and Schnieke, A. (2012). Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One 7, e43323.
Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFaks7vO&md5=196c6b72c2585ac6d6c14e978f44af34CAS | 23071491PubMed |

Liggins, G. C., and Howie, R. N. (1972). A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50, 515–525.
| 1:STN:280:DyaE3s%2FgvVCrtw%3D%3D&md5=0498e000864d1bc6a69deb515eb72e2eCAS | 4561295PubMed |

Lillico, S. G., Proudfoot, C., Carlson, D. F., Stverakova, D., Neil, C., Blain, C., King, T. J., Ritchie, W. A., Tan, W. F., Mileham, A. J., McLaren, D. G., Fahrenkrug, S. C., and Whitelaw, C. B. A. (2013). Live pigs produced from genome edited zygotes. Sci. Rep. 3, 2847.
Live pigs produced from genome edited zygotes.Crossref | GoogleScholarGoogle Scholar | 24108318PubMed |

Lin, J. L., Lai, L. P., Lin, C. S., Du, C. C., Wu, T. J., Chen, S. P., Lee, W. C., Yang, P. C., Tseng, Y. Z., Lien, W. P., and Huang, S. K. S. (2003). Electrophysiological mapping and histological examinations of the swine atrium with sustained (≥24 h) atrial fibrillation: a suitable animal model for studying human atrial fibrillation. Cardiology 99, 78–84.
Electrophysiological mapping and histological examinations of the swine atrium with sustained (≥24 h) atrial fibrillation: a suitable animal model for studying human atrial fibrillation.Crossref | GoogleScholarGoogle Scholar | 12711882PubMed |

Lin, C. S., Lai, L. P., Lin, J. L., Sun, Y. L., Hsu, C. W., Chen, C. L., Mao, S. J. T., and Huang, S. K. S. (2007). Increased expression of extracellular matrix proteins in rapid atrial pacing-induced atrial fibrillation. Heart Rhythm 4, 938–949.
Increased expression of extracellular matrix proteins in rapid atrial pacing-induced atrial fibrillation.Crossref | GoogleScholarGoogle Scholar | 17599682PubMed |

Loi, P., Clinton, M., Vackova, I., Fulka, J., Feil, R., Palmieri, C., Della Salda, L., and Ptak, G. (2006). Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 65, 1110–1121.
Placental abnormalities associated with post-natal mortality in sheep somatic cell clones.Crossref | GoogleScholarGoogle Scholar | 16154189PubMed |

Lonergan, P. (2007). State-of-the-art embryo technologies in cattle. Soc. Reprod. Fertil. Suppl. 64, 315–325.
| 1:STN:280:DC%2BD2s3otlKiuw%3D%3D&md5=322b26bf3644bfcc30378f2fa803688eCAS | 17491156PubMed |

MacGillivray, J. D., Fealy, S., Terry, M. A., Koh, J. L., Nixon, A. J., and Warren, R. F. (2006). Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats. J. Shoulder Elbow Surg. 15, 639–644.
Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats.Crossref | GoogleScholarGoogle Scholar | 16979063PubMed |

Mak, I. W., Evaniew, N., and Ghert, M. (2014). Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118.
| 24489990PubMed |

Malhi, P. S., Adams, G. P., and Singh, J. (2005). Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol. Reprod. 73, 45–53.
Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srtrg%3D&md5=022658dd6a5ca2bba8820df95d3d4cdeCAS | 15744017PubMed |

Mansouri-Attia, N., Sandra, O., Aubert, J., Degreiie, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X. Z., Tian, X. C., Lewin, H. A., and Renard, J. P. (2009). Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl Acad. Sci. USA 106, 5687–5692.
Endometrium as an early sensor of in vitro embryo manipulation technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurY%3D&md5=049ad45de0d722a3086ea994b9d4a7b5CAS | 19297625PubMed |

Martin, G. R. (1981). Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proc. Natl Acad. Sci. USA 78, 7634–7638.
Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387ltV2htg%3D%3D&md5=2cf6022623569f56e272f079daaf126aCAS | 6950406PubMed |

McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.
Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKku74%3D&md5=f21a07ec7bbb9b3e500034fcba854cc5CAS | 10890449PubMed |

McMahon, M. A., Rahdar, M., and Porteus, M. (2012). Gene editing: not just for translation anymore. Nat. Methods 9, 28–31.
Gene editing: not just for translation anymore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12gsbjI&md5=fdda6a4cc1a31b2bb157dfff8479c776CAS |

Medawar, P. B. (1953). Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7, 320–338.

Mendicino, M., Ramsoondar, J., Phelps, C., Vaught, T., Ball, S., LeRoith, T., Monahan, J., Chen, S., Dandro, A., Boone, J., Jobst, P., Vance, A., Wertz, N., Bergman, Z., Sun, X. Z., Polejaeva, I., Butler, J., Dai, Y., Ayares, D., and Wells, K. (2011). Generation of antibody- and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus. Transgenic Res. 20, 625–641.
Generation of antibody- and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKht7s%3D&md5=bf76cfba5c1a8f89d8c10dd44c9ac18aCAS | 20872248PubMed |

Meng, L., Wan, Y. J., Sun, Y. Y., Zhang, Y. L., Wang, Z. Y., Song, Y., and Wang, F. (2013a). Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes. PLoS One 8, e77798.
Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleqtrnI&md5=6c167a1cc02324d1de09df7563a12dd2CAS | 24204972PubMed |

Meng, Q., Hall, J., Rutigliano, H., Zhou, X., Sessions, B. R., Stott, R., Panter, K., Davies, C. J., Ranjan, R., Dosdall, D., MacLeod, R., Marrouche, N., White, K. L., Wang, Z., and Polejaeva, I. A. (2013b). Generation of cloned transgenic goats with cardiac specific overexpression of transforming growth factor β1. Reprod. Fertil. Dev. 25, 162–163.
Generation of cloned transgenic goats with cardiac specific overexpression of transforming growth factor β1.Crossref | GoogleScholarGoogle Scholar |

Mitka, M. (2011). Drug for severe sepsis is withdrawn from market, fails to reduce mortality. JAMA 306, 2439–2440.
| 1:CAS:528:DC%2BC3MXhs1Gkur3F&md5=fc24d0b33f84c85f4fab8da9c48ab1bdCAS | 22166598PubMed |

Moláček, J., Třeška, V., Kobr, J., Čertík, B., Skalický, T., Kuntscher, V., and Křížková, V. (2009). Optimization of the model of abdominal aortic aneurysm: experiment in an animal model. J. Vasc. Res. 46, 1–5.
Optimization of the model of abdominal aortic aneurysm: experiment in an animal model.Crossref | GoogleScholarGoogle Scholar | 18515969PubMed |

Mulvihill, J. J. (1972). Congenital and genetic disease in domestic animals. Science 176, 132–137.
Congenital and genetic disease in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE387kt1Kmtg%3D%3D&md5=82d549631ea4e3356601abf61b44337fCAS | 5014436PubMed |

Murphy, E. H., Johnson, E. D., and Arko, F. R. (2007). Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J. Endovasc. Ther. 14, 585–592.
Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation.Crossref | GoogleScholarGoogle Scholar | 17696636PubMed |

Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Polejaeva, I. A., and Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9, e106718.
Efficient gene knockout in goats using CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar | 25188313PubMed |

Nicholas, F. W. (2003). Online Mendelian Inheritance in Animals (OMIA): a comparative knowledgebase of genetic disorders and other familial traits in non-laboratory animals. Nucleic Acids Res. 31, 275–277.
Online Mendelian Inheritance in Animals (OMIA): a comparative knowledgebase of genetic disorders and other familial traits in non-laboratory animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFSms7s%3D&md5=57462d6f44f4d1766fc9658b8d6c91d8CAS | 12520001PubMed |

Notarianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43, 255–260.
| 1:STN:280:DyaK3s7ktVSrsg%3D%3D&md5=78e8bb94301886f8710b2f57c6d3c9fcCAS | 1843344PubMed |

Oliveira, L. J., Mansouri-Attia, N., Fahey, A. G., Browne, J., and Forde, N. (2014). Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS One 8, e75571.
Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar |

Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. F. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
Pig cloning by microinjection of fetal fibroblast nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1WhsL8%3D&md5=ba9b129378703ff65840363b53ff4ef0CAS | 10947985PubMed |

Ostedgaard, L. S., Meyerholz, D. K., Chen, J. H., Pezzulo, A. A., Karp, P. H., Rokhlina, T., Ernst, S. E., Hanfland, R. A., Reznikov, L. R., Ludwig, P. S., Rogan, M. P., Davis, G. J., Dohrn, C. L., Wohlford-Lenane, C., Taft, P. J., Rector, M. V., Hornick, E., Nassar, B. S., Samuel, M., Zhang, Y. P., Richter, S. S., Uc, A., Shilyansky, J., Prather, R. S., McCray, P. B., Zabner, J., Welsh, M. J., and Stoltz, D. A. (2011). The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci. Transl. Med. 3, 74ra24.
The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs.Crossref | GoogleScholarGoogle Scholar | 21411740PubMed |

Østrup, E., Hyttel, P., and Østrup, O. (2011). Embryo–maternal communication: signalling before and during placentation in cattle and pig. Reprod. Fertil. Dev. 23, 964–975.
Embryo–maternal communication: signalling before and during placentation in cattle and pig.Crossref | GoogleScholarGoogle Scholar | 22127002PubMed |

Ozaki, S., Herijgers, P., and Flameng, W. (2004). A new model to test the calcification characteristics of bioprosthetic heart valves. Ann. Thorac. Cardiovasc. Surg. 10, 23–28.
| 15008695PubMed |

Palmieri, C., Loi, P., Reynolds, L. P., Ptak, G., and Della Salda, L. (2007). Placental abnormalities in ovine somatic cell clones at term: a light and electron microscopic investigation. Placenta 28, 577–584.
Placental abnormalities in ovine somatic cell clones at term: a light and electron microscopic investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksV2mt78%3D&md5=6b6ccd0a24398fb0ebbe567802e4f5d4CAS | 17056108PubMed |

Pannetier, M., Elzaiat, M., Thepot, D., and Pailhoux, E. (2012). Telling the story of XX sex reversal in the goat: highlighting the sex-crossroad in domestic mammals. Sex Dev. 6, 33–45.
Telling the story of XX sex reversal in the goat: highlighting the sex-crossroad in domestic mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383jslWmsg%3D%3D&md5=d8585c1749fcf189ae04a2cad05487a2CAS | 22094227PubMed |

Park, D. S., Cerrone, M., Morley, G., Vasquez, C., Fowler, S., Liu, N. A., Bernstein, S. A., Liu, F. Y., Zhang, J., Rogers, C. S., Priori, S. G., Chinitz, L. A., and Fishman, G. I. (2015). Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest. 125, 403–412.
Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.Crossref | GoogleScholarGoogle Scholar | 25500882PubMed |

Patterson, D. F., Haskins, M. E., and Jezyk, P. F. (1982). Models of human genetic disease in domestic animals. Adv. Hum. Genet. 12, 263–339.
Models of human genetic disease in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2FhvFaqsQ%3D%3D&md5=edfe7349cd0de51ff6e31286238679cbCAS | 6751045PubMed |

Pearce, A. I., Richards, R. G., Milz, S., Schneider, E., and Pearce, S. G. (2007). Animal models for implant biomaterial research in bone: a review. Eur. Cell. Mater. 13, 1–10.
| 1:CAS:528:DC%2BD2sXjsFegu78%3D&md5=9eaaf486ab5810270220855fd92df13eCAS | 17334975PubMed |

Pennisi, E. (1997). The lamb that roared. Science 278, 2038–2039.
The lamb that roared.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Wk&md5=a6b12a83e8ae4999dced331d438d04ceCAS | 9432711PubMed |

Petters, R. M., Alexander, C. A., Wells, K. D., Collins, E. B., Sommer, J. R., Blanton, M. R., Rojas, G., Hao, Y., Flowers, W. L., Banin, E., Cideciyan, A. V., Jacobson, S. G., and Wong, F. (1997). Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 15, 965–970.
Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFKjt74%3D&md5=e3e9cfa41ca827d0e80ce9e7efe95521CAS | 9335046PubMed |

Phelps, C. J., Koike, C., Vaught, T. D., Boone, J., Wells, K. D., Chen, S. H., Ball, S., Specht, S. M., Polejaeva, I. A., Monahan, J. A., Jobst, P. M., Sharma, S. B., Lamborn, A. E., Garst, A. S., Moore, M., Demetris, A. J., Rudert, W. A., Bottino, R., Bertera, S., Trucco, M., Starzl, T. E., Dai, Y., and Ayares, D. L. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414.
Production of alpha 1,3-galactosyltransferase-deficient pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsF2rtA%3D%3D&md5=435e397270d2b20635ce9cfc170f20f5CAS | 12493821PubMed |

Polejaeva, I. A., and Campbell, K. H. (2000). New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology 53, 117–126.
New advances in somatic cell nuclear transfer: application in transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvV2jsw%3D%3D&md5=a45a107995ab1b15c138c2bad5ef5977CAS | 10735067PubMed |

Polejaeva, I., and Mitalipov, S. (2013). Stem cell potency and the ability to contribute to chimeric organisms. Reproduction 145, R81–R88.
Stem cell potency and the ability to contribute to chimeric organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFegur8%3D&md5=fd3bf319d1f093a6e993fbec337b753bCAS | 23221011PubMed |

Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., Colman, A., and Campbell, K. H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Cloned pigs produced by nuclear transfer from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvkt12rug%3D%3D&md5=87d17e0ef27e3155f8cd7eec19863207CAS | 10993078PubMed |

Polejaeva, I. A., Ranjan, R., Hall, J., Rutigliano, H. M., Thomas, A. J., Dosdall, D., MacLeod, R., Marrouche, N., Wang, Z. D., Olsen, A., White, K. L., and Davies, C. J. (2013). Cardiac specific overexpression of transforming growth factor beta 1 (TGF-beta 1) increases susceptibility to atrial fibrillation in transgenic goats. Circulation 128, A16697.

Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., Lillico, S. G., Mileham, A. J., McLaren, D. G., Whitelaw, C. B. A., and Fahrenkrug, S. C. (2015). Genome edited sheep and cattle. Transgenic Res. 24, 147–153.
Genome edited sheep and cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFSgsLrF&md5=adda7c067f6ea9e39a2e5f9af01ca087CAS | 25204701PubMed |

Pursel, V. G., and Rexroad, C. E. (1993). Status of research with transgenic farm-animals. J. Anim. Sci. 71, 10–19.
| 8505265PubMed |

Ramadan, R. O., Elhassan, A. M., and Eldeen, M. H. T. (1988). Malignant-melanoma in goats: a clinicopathological study. J. Comp. Pathol. 98, 237–246.
Malignant-melanoma in goats: a clinicopathological study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3ivVGntg%3D%3D&md5=fe692b17c7b294e91dfb8e3d68d83e21CAS | 3372755PubMed |

Renner, S., Fehlings, C., Herbach, N., Hofmann, A., von Waldthausen, D. C., Kessler, B., Ulrichs, K., Chodnevskaja, I., Moskalenko, V., Amselgruber, W., Goke, B., Pfeifer, A., Wanke, R., and Wolf, E. (2010). Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59, 1228–1238.
Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFegtrw%3D&md5=791b79c36980a80723712328e12c8492CAS | 20185813PubMed |

Renner, S., Braun-Reichhart, C., Blutke, A., Herbach, N., Emrich, D., Streckel, E., Wunsch, A., Kessler, B., Kurome, M., Bahr, A., Klymiuk, N., Krebs, S., Puk, O., Nagashima, H., Graw, J., Blum, H., Wanke, R., and Wolf, E. (2013). Permanent neonatal diabetes in INSC94Y transgenic pigs. Diabetes 62, 1505–1511.
Permanent neonatal diabetes in INSC94Y transgenic pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSnurnI&md5=1d7f91ee727491a79398e08131040d4aCAS | 23274907PubMed |

Reynolds, L. P., Ireland, J. J., Caton, J. S., Bauman, D. E., and Davis, T. A. (2009). Commentary on domestic animals in agricultural and biomedical research: an endangered enterprise. J. Nutr. 139, 427–428.
Commentary on domestic animals in agricultural and biomedical research: an endangered enterprise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKitLs%3D&md5=b719fe5f341f691ddde3db73ba6c16b3CAS | 19158219PubMed |

Rijkers, T., Peetz, A., and Ruther, U. (1994). Insertional mutagenesis in transgenic mice. Transgenic Res. 3, 203–215.
Insertional mutagenesis in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FgsVKqsw%3D%3D&md5=eb8e548513cc208471635e310b5cec8eCAS | 7920737PubMed |

Roberts, R. M., Smith, G. W., Bazer, F. W., Cibelli, J., Seidel, G. E., Bauman, D. E., Reynolds, L. P., and Ireland, J. J. (2009). Research priorities. Farm animal research in crisis. Science 324, 468–469.
Research priorities. Farm animal research in crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlGrtr8%3D&md5=690cfa553def9d8378442f327cd53f35CAS | 19390030PubMed |

Rodríguez-Alvarez, L., Cox, J., Tovar, H., Einspanier, R., and Castro, F. O. (2010). Changes in the expression of pluripotency-associated genes during preimplantation and pen-implantation stages in bovine cloned and in vitro produced embryos. Zygote 18, 269–279.
Changes in the expression of pluripotency-associated genes during preimplantation and pen-implantation stages in bovine cloned and in vitro produced embryos.Crossref | GoogleScholarGoogle Scholar | 20429963PubMed |

Rogers, C. S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D. A., Li, Y., Petroff, E., Vermeer, D. W., Kabel, A. C., Yan, Z., Spate, L., Wax, D., Murphy, C. N., Rieke, A., Whitworth, K., Linville, M. L., Korte, S. W., Engelhardt, J. F., Welsh, M. J., and Prather, R. S. (2008). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577.
Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Cnu7k%3D&md5=54dcba555f0acf331bd30d599c2cde40CAS | 18324337PubMed |

Rosenberg, H. F., and Domachowske, J. B. (2012). Inflammatory responses to respiratory syncytial virus (RSV) Infection and the development of immunomodulatory pharmacotherapeutics. Curr. Med. Chem. 19, 1424–1431.
Inflammatory responses to respiratory syncytial virus (RSV) Infection and the development of immunomodulatory pharmacotherapeutics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksleqtLw%3D&md5=d661472a6e00e2658ec6343fbb4400dfCAS | 22360479PubMed |

Roth, J. A., and Tuggle, C. K. (2015). Livestock models in translational medicine. ILAR J. 56, 1–6.
Livestock models in translational medicine.Crossref | GoogleScholarGoogle Scholar | 25991694PubMed |

Saito, S., Umekage, H., Sakamoto, Y., Sakai, M., Tanebe, K., Sasaki, Y., and Morikawa, H. (1999). Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am. J. Reprod. Immunol. 41, 297–306.
Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzgsFOrtQ%3D%3D&md5=861cf6ab09e6f81df02768c921620aa9CAS | 10378024PubMed |

Schlafer, D. H., Fisher, P. J., and Davies, C. J. (2000). The bovine placenta before and after birth: placental development and function in health and disease. Anim. Reprod. Sci. 60-61, 145–160.
The bovine placenta before and after birth: placental development and function in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvgt1Khug%3D%3D&md5=8c0b267d44c3983c58067181495054f2CAS | 10844191PubMed |

Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A., and Campbell, K. H. S. (1997). Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.
Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFyh&md5=c92350b6ce4cd6bd03de7d526dabf538CAS | 9405350PubMed |

Seok, J., Warren, H. S., Cuenca, A. G., Mindrinos, M. N., Baker, H. V., Xu, W., Richards, D. R., McDonald-Smith, G. P., Gao, H., Hennessy, L., Finnerty, C. C., Lopez, C. M., Honari, S., Moore, E. E., Minei, J. P., Cuschieri, J., Bankey, P. E., Johnson, J. L., Sperry, J., Nathens, A. B., Billiar, T. R., West, M. A., Jeschke, M. G., Klein, M. B., Gamelli, R. L., Gibran, N. S., Brownstein, B. H., Miller-Graziano, C., Calvano, S. E., Mason, P. H., Cobb, J. P., Rahme, L. G., Lowry, S. F., Maier, R. V., Moldawer, L. L., Herndon, D. N., Davis, R. W., Xiao, W., Tompkins, R. G.;, Inflammation and Host Response to Injury and Large Scale Collaborative Research Program (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512.
Genomic responses in mouse models poorly mimic human inflammatory diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVKqsro%3D&md5=af4c0629ff5a2386d86bfe2b3350a5d7CAS | 23401516PubMed |

Shevell, T., Malone, F. D., Vidaver, J., Porter, T. F., Luthy, D. A., Comstock, C. H., Hankins, G. D., Eddleman, K., Dolan, S., Dugoff, L., Craigo, S., Timor, I. E., Carr, S. R., Wolfe, H. M., Bianchi, D. W., and D’Alton, M. E. (2005). Assisted reproductive technology and pregnancy outcome. Obstet. Gynecol. 106, 1039–1045.
Assisted reproductive technology and pregnancy outcome.Crossref | GoogleScholarGoogle Scholar | 16260523PubMed |

Sieren, J. C., Meyerholz, D. K., Wang, X. J., Davis, B. T., Newell, J. D., Hammond, E., Rohret, J. A., Rohret, F. A., Struzynski, J. T., Goeken, J. A., Naumann, P. W., Leidinger, M. R., Taghiyev, A., Van Rheeden, R., Hagen, J., Darbro, B. W., Quelle, D. E., and Rogers, C. S. (2014). Development and translational imaging of a TP53 porcine tumorigenesis model. J. Clin. Invest. 124, 4052–4066.
Development and translational imaging of a TP53 porcine tumorigenesis model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFalu7bE&md5=0e3f4bbf83f6223f1407824f129cb925CAS | 25105366PubMed |

Stoltz, D. A., Meyerholz, D. K., and Welsh, M. J. (2015). Origins of cystic fibrosis lung disease. N. Engl. J. Med. 372, 351–362.
Origins of cystic fibrosis lung disease.Crossref | GoogleScholarGoogle Scholar | 25607428PubMed |

Suzuki, Y., Lyons, J. K., Yeung, A. C., and Ikeno, F. (2008). In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk. Catheter. Cardiovasc. Interv. 71, 100–107.
In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk.Crossref | GoogleScholarGoogle Scholar | 17985383PubMed |

Suzuki, Y., Yeung, A. C., and Ikeno, F. (2011). The representative porcine model for human cardiovascular disease. J. Biomed. Biotechnol. 2011, 195483.
The representative porcine model for human cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 21253493PubMed |

Suzuki, S., Iwamoto, M., Saito, Y., Fuchimoto, D., Sembon, S., Suzuki, M., Mikawa, S., Hashimoto, M., Aoki, Y., Najima, Y., Takagi, S., Suzuki, N., Suzuki, E., Kubo, M., Mimuro, J., Kashiwakura, Y., Madoiwa, S., Sakata, Y., Perry, A. C. F., Ishikawa, F., and Onishi, A. (2012). Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758.
Il2rg gene-targeted severe combined immunodeficiency pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFeqsbk%3D&md5=dd5c8146463439cf9d83b75b58dcc9c7CAS | 22704516PubMed |

Tebbutt, S. J., Wardle, C. J. C., Hill, D. F., and Harris, A. (1995). Molecular analysis of the ovine cystic-fibrosis transmembrane conductance regulator gene. Proc. Natl Acad. Sci. USA 92, 2293–2297.
Molecular analysis of the ovine cystic-fibrosis transmembrane conductance regulator gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVCqurg%3D&md5=ab28bd2a602c0b6634866cdbdae7237bCAS | 7534416PubMed |

The Bovine Genome Sequencing and Analysis Consortium, Elsik, C. G., Tellam, R. L., and Worley, K. C. (2009). The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522–528.
The genome sequence of taurine cattle: a window to ruminant biology and evolution.Crossref | GoogleScholarGoogle Scholar | 19390049PubMed |

Thijssen, V. L., van der Velden, H. M., van Ankeren, E. P., Ausma, J., Allessie, M. A., Borgers, M., van Eys, G. J., and Jongsma, H. J. (2002). Analysis of altered gene expression during sustained atrial fibrillation in the goat. Cardiovasc. Res. 54, 427–437.
Analysis of altered gene expression during sustained atrial fibrillation in the goat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivF2qsbo%3D&md5=aae41ffe0db73e3fde4a7f1afadc8cd6CAS | 12062347PubMed |

Trochim, W., Kane, C., Graham, M. J., and Pincus, H. A. (2011). Evaluating translational research: a process marker model. Clin. Transl. Sci. 4, 153–162.
Evaluating translational research: a process marker model.Crossref | GoogleScholarGoogle Scholar | 21707944PubMed |

Umeyama, K., Watanabe, M., Saito, H., Kurome, M., Tohi, S., Matsunari, H., Miki, K., and Nagashima, H. (2009). Dominant-negative mutant hepatocyte nuclear factor 1 alpha induces diabetes in transgenic-cloned pigs. Transgenic Res. 18, 697–706.
Dominant-negative mutant hepatocyte nuclear factor 1 alpha induces diabetes in transgenic-cloned pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWrsrbF&md5=26793e833d426387e2d97647e94dbf8fCAS | 19357985PubMed |

Van der Velden, J., and Snibson, K. J. (2011). Airway disease: the use of large animal models for drug discovery. Pulm. Pharmacol. Ther. 24, 525–532.
Airway disease: the use of large animal models for drug discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFekt7fI&md5=4d831c0b5ed83516120a39ef9a3d8711CAS | 21356324PubMed |

Vassiliev, I., Vassilieva, S., Beebe, L. F., Harrison, S. J., McIlfatrick, S. M., and Nottle, M. B. (2010). In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell. Reprogram. 12, 223–230.
In vitro and in vivo characterization of putative porcine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVahtLk%3D&md5=b5ec03195ffdfd89b2b79f548778a50bCAS | 20677936PubMed |

Viñoles, C., Paganoni, B., Glover, K. M., Milton, J. T., Blache, D., Blackberry, M. A., and Martin, G. B. (2010). The use of a ‘first-wave’ model to study the effect of nutrition on ovarian follicular dynamics and ovulation rate in the sheep. Reproduction 140, 865–874.
The use of a ‘first-wave’ model to study the effect of nutrition on ovarian follicular dynamics and ovulation rate in the sheep.Crossref | GoogleScholarGoogle Scholar | 21109612PubMed |

Wall, R. J. (1996). Transgenic livestock: progress and prospects for the future. Theriogenology 45, 57–68.
Transgenic livestock: progress and prospects for the future.Crossref | GoogleScholarGoogle Scholar |

Wang, Z. (2015). Genome engineering in cattle: recent technological advancements. Chromosome Res. 23, 17–29.
Genome engineering in cattle: recent technological advancements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFSqtQ%3D%3D&md5=8227147aa60af0b4c64e1241db82d056CAS | 25596824PubMed |

Watanabe, M., Nakano, K., Matsunari, H., Matsuda, T., Maehara, M., Kanai, T., Kobayashi, M., Matsumura, Y., Sakai, R., Kuramoto, M., Hayashida, G., Asano, Y., Takayanagi, S., Arai, Y., Umeyama, K., Nagaya, M., Hanazono, Y., and Nagashima, H. (2013). Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8, e76478.
Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1egs7%2FK&md5=15b9a2faf39aef117105ce70211ca15fCAS | 24130776PubMed |

Wells, D. N., Misica, P. M., and Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996–1005.
Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGqur4%3D&md5=e0a1b8300c55df651a1639b3d2a9132eCAS | 10084977PubMed |

Westfall, J. M., Mold, J., and Fagnan, L. (2007). Practice-based research: ‘Blue Highways’ on the NIH roadmap. JAMA 297, 403–406.
Practice-based research: ‘Blue Highways’ on the NIH roadmap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSmtrw%3D&md5=d8e492d7146316dbde2936d8ed30fc2cCAS | 17244837PubMed |

Wheeler, M. B. (1994). Development and validation of swine embryonic stem cells: a review. Reprod. Fertil. Dev. 6, 563–568.
Development and validation of swine embryonic stem cells: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FlvVSksA%3D%3D&md5=3dafe3a10893f08bb5826d9bc0b8474aCAS | 7569034PubMed |

Wijffels, M. C., Kirchhof, C. J., Dorland, R., and Allessie, M. A. (1995). Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968.
Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MvgtFemtg%3D%3D&md5=6f3898153916dcf1ec172326a3a834a9CAS | 7671380PubMed |

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=b342bc4ed2627defdfde20d0e99d7404CAS | 9039911PubMed |

Wolf, E., Schernthaner, W., Zakhartchenko, V., Prelle, K., Stojkovic, M., and Brem, G. (2000). Transgenic technology in farm animals: progress and perspectives. Exp. Physiol. 85, 615–625.
Transgenic technology in farm animals: progress and perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlSrsg%3D%3D&md5=6d956b8a745231531c912f5b02adc000CAS | 11187957PubMed |

Wolf, E., Renner, S., Kessler, B., Kurome, M., Gungor, T., Zakhartchenko, V., Wunsch, A., Richter, A., Klymiuk, N., and Aigner, B. (2011). Transgenic pigs as models for translational biomedical research. Transgenic Res. 20, 1150.

Wolfe, J. H. (2009). Gene therapy in large animal models of human genetic diseases: introduction. ILAR J. 50, 107–111.
Gene therapy in large animal models of human genetic diseases: introduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1eksb4%3D&md5=b195055508583d597ff1dc3438c3e203CAS | 19293455PubMed |

Yang, H. Q., Wang, G. H., Sun, H. T., Shu, R. Z., Liu, T., Wang, C. E., Liu, Z. M., Zhao, Y., Zhao, B. T., Ouyang, Z., Yang, D. S., Huang, J. L., Zhou, Y. L., Li, S. H., Jiang, X. D., Xiao, Z. C., Li, X. J., and Lai, L. X. (2014). Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res. 24, 464–481.
Species-dependent neuropathology in transgenic SOD1 pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvV2hsro%3D&md5=1cbf676f3abebadb6a7f11dac0e689a9CAS |

Yapura, J., Mapletoft, R. J., Pierson, R., Singh, J., Naile, J., Giesy, J. P., and Adams, G. P. (2011). A bovine model for examining the effects of an aromatase inhibitor on ovarian function in women. Fertil. Steril. 96, 434–438.e3.
A bovine model for examining the effects of an aromatase inhibitor on ovarian function in women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlygs7o%3D&md5=1acf33dc4ed5ffa0f1adbebf7498d989CAS | 21696721PubMed |

Young, L. E., Schnieke, A. E., McCreath, K. J., Wieckowski, S., Konfortova, G., Fernandes, K., Ptak, G., Kind, A. J., Wilmut, I., Loi, P., and Feil, R. (2003). Conservation of IGF2–H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mech. Dev. 120, 1433–1442.
Conservation of IGF2–H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlyns7Y%3D&md5=2741d0e4304ca7fe83062083648fb95cCAS | 14654216PubMed |

Yu, S. L., Luo, J. J., Song, Z. Y., Ding, F. R., Dai, Y. P., and Li, N. (2011). Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21, 1638–1640.
Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVags7%2FF&md5=c7af008d6678e7d1c981a774ab0af3c8CAS |