Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The effects of sildenafil citrate on feto–placental development and haemodynamics in a rabbit model of intrauterine growth restriction

Jorge López-Tello A , María Arias-Álvarez A , Maria-Ángeles Jiménez-Martínez B , Alicia Barbero-Fernández B , Rosa María García-García C , María Rodríguez D , Pedro L. Lorenzo C , Laura Torres-Rovira A , Susana Astiz E , Antonio González-Bulnes E F and Pilar G. Rebollar D G
+ Author Affiliations
- Author Affiliations

A Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.

B Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.

C Department of Physiology (Animal Physiology), Veterinary Faculty, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.

D Department of Animal Production, Polytechnic University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.

E Comparative Physiology Lab, SGIT-INIA, Avda, Puerta de Hierro, s/n, 28040, Madrid, Spain.

F Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.

G Corresponding author. Email: pilar.grebollar@upm.es

Reproduction, Fertility and Development 29(6) 1239-1248 https://doi.org/10.1071/RD15330
Submitted: 13 August 2015  Accepted: 28 March 2016   Published: 23 May 2016

Abstract

The present study evaluated the effectiveness of sildenafil citrate (SC) to improve placental and fetal growth in a diet-induced rabbit model of intrauterine growth restriction (IUGR). Pregnant rabbits were fed either ad libitum (Group C) or restricted to 50% of dietary requirements (Group R) or restricted and treated with SC (Group SC). The treatment with SC improved placental development by increasing vascularity and vessel hypertrophy in the decidua. The assessment of feto–placental haemodynamics showed higher resistance and pulsatility indices at the middle cerebral artery (MCA) in fetuses treated with SC when compared with Group R, which had increased systolic peak and time-averaged mean velocities at the MCA. Furthermore, fetuses in the SC group had significantly higher biparietal and thoracic diameters and longer crown–rump lengths than fetuses in Group R. Hence, the SC group had a reduced IUGR rate and a higher kit size at birth compared with Group R. In conclusion, SC may provide potential benefits in pregnancies with placental insufficiency and IUGR, partially counteracting the negative effects of food restriction on placental development and fetal growth. However, the present study also found evidence of a possible blood overflow in the brain that warrants further investigation.

Additional keywords: fetus, placenta, pregnancy.


References

Anderson, J. M. (1972). Increased brain weight–liver weight ratio as a necropsy sign of intrauterine undernutrition. J. Clin. Pathol. 25, 867–871.
Increased brain weight–liver weight ratio as a necropsy sign of intrauterine undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FnsFeisQ%3D%3D&md5=72a766ecbe0697d172489a2a9733105eCAS | 4646298PubMed |

Bauer, R., Walter, B., Brust, P., Fuchtner, F., and Zwiener, U. (2003). Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets. Eur. J. Obstet. Gynecol. Reprod. Biol. 110, S40–S49.
Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets.Crossref | GoogleScholarGoogle Scholar | 12965089PubMed |

Beaudoin, S., Barbet, P., and Bargy, F. (2003). Developmental stages in the rabbit embryo: guidelines to choose an appropriate experimental model. Fetal Diagn. Ther. 18, 422–427.
Developmental stages in the rabbit embryo: guidelines to choose an appropriate experimental model.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svosFertA%3D%3D&md5=1fcf4a56c5a134c8925699fefad303a5CAS | 14564113PubMed |

Buhimschi, C. S., Garfield, R. E., Weiner, C. P., and Buhimschi, I. A. (2004). The presence and function of phosphodiesterase type 5 in the rat myometrium. Am. J. Obstet. Gynecol. 190, 268–274.
The presence and function of phosphodiesterase type 5 in the rat myometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOiuw%3D%3D&md5=0800abc85c885152cf60c5d136d873eaCAS | 14749671PubMed |

Burns, S. P., Desai, M., Cohen, R. D., Hales, C. N., Iles, R. A., Germain, J. P., Going, T. C., and Bailey, R. A. (1997). Gluconeogenesis, glucose handling and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J. Clin. Invest. 100, 1768–1774.
Gluconeogenesis, glucose handling and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFeiu7o%3D&md5=cea53779a1f2b909d159106c10ee5c99CAS | 9312176PubMed |

Camm, E. J., Hansell, J. A., Kane, A. D., Herrera, E. A., Lewis, C., Wong, S., Morrell, N. W., and Giussani, D. A. (2010). Partial contributions of developmental hypoxia and undernutrition to prenatal alterations in somatic growth and cardiovascular structure and function. Am. J. Obstet. Gynecol. 203, 495.e24–495.e34.
Partial contributions of developmental hypoxia and undernutrition to prenatal alterations in somatic growth and cardiovascular structure and function.Crossref | GoogleScholarGoogle Scholar |

Carr, D. J., Aitken, R. P., Milne, J. S., David, A. L., and Wallace, J. M. (2012). Feto–placental biometry and umbilical artery Doppler velocimetry in the overnourished adolescent model of fetal growth restriction. Am. J. Obstet. Gynecol. 207, 141.e6–141.e15.
Feto–placental biometry and umbilical artery Doppler velocimetry in the overnourished adolescent model of fetal growth restriction.Crossref | GoogleScholarGoogle Scholar |

Cauli, O., Herraiz, S., Pellicer, B., Pellicer, A., and Felipo, V. (2010). Treatment with sildenafil prevents impairment of learning in rats born to pre-eclamptic mothers. Neuroscience 171, 506–512.
Treatment with sildenafil prevents impairment of learning in rats born to pre-eclamptic mothers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2gu7vE&md5=0d3f8c689bf43e406f1964cc462c856dCAS | 20832451PubMed |

Chuang, A. T., Strauss, J. D., Murphy, R. A., and Steers, W. D. (1998). Sildenafil, a type-5 cGMP phosphodiesterase inhibitor, specifically amplifies endogenous cGMP-dependent relaxation in rabbit corpus cavernosum smooth muscle in vitro. J. Urol. 160, 257–261.
Sildenafil, a type-5 cGMP phosphodiesterase inhibitor, specifically amplifies endogenous cGMP-dependent relaxation in rabbit corpus cavernosum smooth muscle in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFaq&md5=6afb3914a1a2b631bb22dc4553e97654CAS | 9628660PubMed |

Cohn, H. E., Sacks, E. J., Heymann, M. A., and Rudolph, A. M. (1974). Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am. J. Obstet. Gynecol. 120, 817–824.
Cardiovascular responses to hypoxemia and acidemia in fetal lambs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2Flt1akuw%3D%3D&md5=a1dfa72f24ee23a2dda0c9c8d37d1d65CAS | 4429091PubMed |

Coppage, K. H., Sun, X., Baker, R. S., and Clark, K. E. (2005). Expression of phosphodiesterase 5 in maternal and fetal sheep. Am. J. Obstet. Gynecol. 193, 1005–1010.
Expression of phosphodiesterase 5 in maternal and fetal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSmsLjN&md5=b505bcaab8d9714f2b971eef9a3f9cdaCAS | 16157102PubMed |

Dastjerdi, M. V., Hosseini, S., and Bayani, L. (2012). Sildenafil citrate and utero–placental perfusion in fetal growth restriction. J. Res. Med. Sci. 17, 632–636.
| 23798922PubMed |

Derrick, M., Drobyshevsky, A., Ji, X., Chen, L., Yang, Y., Ji, H., Silverman, R. B., and Tan, S. (2009). Hypoxia–ischemia causes persistent movement deficits in a perinatal rabbit model of cerebral palsy: assessed by a new swim test. Int. J. Dev. Neurosci. 27, 549–557.
Hypoxia–ischemia causes persistent movement deficits in a perinatal rabbit model of cerebral palsy: assessed by a new swim test.Crossref | GoogleScholarGoogle Scholar | 19573586PubMed |

Desai, M., Gayle, D., Babu, J., and Ross, M. G. (2007). The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. Am. J. Obstet. Gynecol. 196, 555.e1–555.e7.
The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype.Crossref | GoogleScholarGoogle Scholar |

Dilworth, M. R., Andersson, I., Renshall, L. J., Cowley, E., Baker, P., Greenwood, S., Sibley, C. P., and Wareing, M. (2013). Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype. PLoS One 8, e77748.
Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleqtrzP&md5=384e191b3acfce31d8d52f2ca72f8c4aCAS | 24204949PubMed |

Eixarch, E., Figueras, F., Hernandez-Andrade, E., Crispi, F., Nadal, A., Torre, I., Oliveira, S., and Gratacos, E. (2009). An experimental model of fetal growth restriction based on selective ligature of utero–placental vessels in the pregnant rabbit. Fetal Diagn. Ther. 26, 203–211.
An experimental model of fetal growth restriction based on selective ligature of utero–placental vessels in the pregnant rabbit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MfktFKquw%3D%3D&md5=a2f304206c0660118cf53b9c88b39aafCAS | 19955698PubMed |

Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., and Duranthon, V. (2012). Rabbit as a reproductive model for human health. Reproduction 144, 1–10.
Rabbit as a reproductive model for human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2ht7rK&md5=81aff50416a8c87485141c935745fdfaCAS | 22580370PubMed |

Fowden, A. L., and Moore, T. (2012). Maternal–fetal resource allocation: co-operation and conflict. Placenta 33, e11–e15.
Maternal–fetal resource allocation: co-operation and conflict.Crossref | GoogleScholarGoogle Scholar | 22652046PubMed |

Ganzevoort, W., Alfirevic, Z., von Dadelszen, P., Kenny, L., Papageorghiou, A., van Wassenaer-Leemhuis, A., Gluud, C., Mol, B. W., and Baker, P. N. (2014). STRIDER: Sildenafil therapy in dismal prognosis early-onset intrauterine growth restriction – a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis. Syst. Rev. 3, 23.
STRIDER: Sildenafil therapy in dismal prognosis early-onset intrauterine growth restriction – a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis.Crossref | GoogleScholarGoogle Scholar | 24618418PubMed |

George, E. M., Palei, A. C., Dent, E. A., and Granger, J. P. (2013). Sildenafil attenuates placental ischemia-induced hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R397–R403.
Sildenafil attenuates placental ischemia-induced hypertension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVegsr7F&md5=dc4e366764b1ebae2246ba264bea5ab6CAS | 23785075PubMed |

Ghidini, A. (1996). Idiopathic fetal growth restriction: a pathophysiologic approach. Obstet. Gynecol. Surv. 51, 376–382.
Idiopathic fetal growth restriction: a pathophysiologic approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zmslClsQ%3D%3D&md5=9e5e550ed4a49e5bf990a60f523fb06bCAS | 8771577PubMed |

Giussani, D. A. (2011). The vulnerable developing brain. Proc. Natl. Acad. Sci. USA 108, 2641–2642.
The vulnerable developing brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVeks70%3D&md5=5cdb6cf07d1167b34e97f5336afa09e8CAS | 21297035PubMed |

Godfrey, K. M., Haugen, G., Kiserud, T., Inskip, H. M., Cooper, C., Harvey, N. C., Crozier, S. R., Robinson, S. M., Davies, L., and Hanson, M. A. (2012). Fetal liver blood-flow distribution: role in human developmental strategy to prioritise fat deposition versus brain development. PLoS One 7, e41759.
Fetal liver blood-flow distribution: role in human developmental strategy to prioritise fat deposition versus brain development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GqsbrO&md5=57ba1f307b6cbbfcbfe3a57c0f40995dCAS | 22927915PubMed |

Hanif, F., Drennan, K., and Mari, G. (2007). Variables that affect the middle cerebral artery peak systolic velocity in fetuses with anaemia and intrauterine growth restriction. Am. J. Perinatol. 24, 501–505.
Variables that affect the middle cerebral artery peak systolic velocity in fetuses with anaemia and intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 17992717PubMed |

Hellerstein, M. K., and Munro, H. N. (1994). Interaction of liver, muscle and adipose tissue in the regulation of metabolism in response to nutritional and other factors. In ‘The Liver: Biology and Pathobiology’. (Ed(s) I. M. Arias, J. L. Boyer, N. Fausto.) pp. 1169–1191. (Raven Press: New York.)

Jensen, A., Roman, C., and Rudolph, A. M. (1991). Effects of reducing uterine blood flow on fetal blood-flow distribution and oxygen delivery. J. Dev. Physiol. 15, 309–323.
| 1:STN:280:DyaK38%2FptFKrtw%3D%3D&md5=02eb787247901bb79f3cff7277f7285bCAS | 1753071PubMed |

Khan, H., Kusakabe, K. T., Wakitani, S., Hiyama, M., Takeshita, A., and Kiso, Y. (2012). Expression and localisation of NO synthase isoenzymes (iNOS and eNOS) in development of the rabbit placenta. J. Reprod. Dev. 58, 231–236.
Expression and localisation of NO synthase isoenzymes (iNOS and eNOS) in development of the rabbit placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVKisro%3D&md5=c2a2a5891e54ce9e7cdc83c3ed8a0908CAS | 22188879PubMed |

Kobayashi, T., Ito, T., and Shiomi, M. (2011). Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases. J. Biomed. Biotechnol. 2011, 406473.
Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases.Crossref | GoogleScholarGoogle Scholar | 21541231PubMed |

Kotera, J., Fujishige, K., and Omori, K. (2000). Immunohistochemical localisation of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues. J. Histochem. Cytochem. 48, 685–693.
Immunohistochemical localisation of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFyntr8%3D&md5=374670788564ba7408f02c9b5f49ef8cCAS | 10769052PubMed |

Lacassie, H. J., Germain, A. M., Valdes, G., Fernandez, M. S., Allamand, F., and Lopez, H. (2004). Management of Eisenmenger syndrome in pregnancy with sildenafil and L-arginine. Obstet. Gynecol. 103, 1118–1120.
Management of Eisenmenger syndrome in pregnancy with sildenafil and L-arginine.Crossref | GoogleScholarGoogle Scholar | 15121629PubMed |

Lecarpentier, E., Morel, O., Tarrade, A., Dahirel, M., Bonneau, M., Gayat, E., Evain-Brion, D., Chavatte-Palmer, P., and Tsatsaris, V. (2012). Quantification of utero–placental vascularisation in a rabbit model of IUGR with three-dimensional power Doppler angiography. Placenta 33, 769–775.
Quantification of utero–placental vascularisation in a rabbit model of IUGR with three-dimensional power Doppler angiography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtrvI&md5=5b149437e34b171dc42fd3398feab322CAS | 22831881PubMed |

Lesage, J., Blondeau, B., Grino, M., Breant, B., and Dupouy, J. P. (2001). Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo–pituitary–adrenal axis in the newborn rat. Endocrinology 142, 1692–1702.
| 1:CAS:528:DC%2BD3MXjt1aktrs%3D&md5=de3a0799ee27eb3ce00ec32341aba431CAS | 11316731PubMed |

Li, L., Jiang, Q., Zhang, L., Ding, G., Gang Zhang, Z., Li, Q., Ewing, J. R., Lu, M., Panda, S., Ledbetter, K. A., Whitton, P. A., and Chopp, M. (2007). Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res. 1132, 185–192.
Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlKktg%3D%3D&md5=75cbbaa7520c67675576ceef53c8c7ccCAS | 17188664PubMed |

Lin, C. S., Lin, G., Xin, Z. C., and Lue, T. F. (2006). Expression, distribution and regulation of phosphodiesterase 5. Curr. Pharm. Des. 12, 3439–3457.
Expression, distribution and regulation of phosphodiesterase 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGlt7%2FJ&md5=6377964560bc90000cdc74d8a193e5e0CAS | 17017938PubMed |

Lin, T. H., Su, Y. N., Shih, J. C., Hsu, H. C., and Lee, C. N. (2012). Resolution of high uterine artery pulsatility index and notching following sildenafil citrate treatment in a growth-restricted pregnancy. Ultrasound Obstet. Gynecol. 40, 609–610.
Resolution of high uterine artery pulsatility index and notching following sildenafil citrate treatment in a growth-restricted pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vjs1yrug%3D%3D&md5=9c15bf95654bea31fdb5c988d81c81b3CAS | 22350857PubMed |

López-Tello, J., Barbero, A., González-Bulnes, A., Astiz, S., Rodríguez, M., Formoso-Rafferty, N., Arias-Álvarez, M., and Rebollar, P. G. (2015). Characterisation of early changes in feto–placental haemodynamics in a diet-induced rabbit model of IUGR. J. Dev. Orig. Health Dis. 6, 454–461.
Characterisation of early changes in feto–placental haemodynamics in a diet-induced rabbit model of IUGR.Crossref | GoogleScholarGoogle Scholar | 26268616PubMed |

Luna, R. L., Nunes, A. K., Oliveira, A. G., Araujo, S. M., Lemos, A. J., Rocha, S. W., Croy, B. A., and Peixoto, C. A. (2015). Sildenafil (Viagra) blocks inflammatory injury in LPS-induced mouse abortion: a potential prophylactic treatment against acute pregnancy loss? Placenta 36, 1122–1129.
Sildenafil (Viagra) blocks inflammatory injury in LPS-induced mouse abortion: a potential prophylactic treatment against acute pregnancy loss?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlyjtLfL&md5=7b5f1f4e6c83e8151d25c852a11da2abCAS | 26303758PubMed |

Malassiné, A., Frendo, J. L., and Evain-Brion, D. (2003). A comparison of placental development and endocrine functions between the human and mouse model. Hum. Reprod. Update 9, 531–539.
A comparison of placental development and endocrine functions between the human and mouse model.Crossref | GoogleScholarGoogle Scholar | 14714590PubMed |

Mari, G., Hanif, F., Kruger, M., Cosmi, E., Santolaya-Forgas, J., and Treadwell, M. C. (2007). Middle cerebral artery peak systolic velocity: a new Doppler parameter in the assessment of growth-restricted fetuses. Ultrasound Obstet. Gynecol. 29, 310–316.
Middle cerebral artery peak systolic velocity: a new Doppler parameter in the assessment of growth-restricted fetuses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7ivV2mtA%3D%3D&md5=f74d51b13b4b029056bd15f6bf6c8f36CAS | 17318946PubMed |

Maršál, K. (2002). Intrauterine growth restriction. Curr. Opin. Obstet. Gynecol. 14, 127–135.
Intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 11914689PubMed |

Matsuoka, T., Mizoguchi, Y., Serizawa, K., Ishikura, T., Mizuguchi, H., and Asano, Y. (2006). Effects of stage and degree of restricted feeding on pregnancy outcome in rabbits. J. Toxicol. Sci. 31, 169–175.
Effects of stage and degree of restricted feeding on pregnancy outcome in rabbits.Crossref | GoogleScholarGoogle Scholar | 16772706PubMed |

Motta, C., Grosso, C., Zanuzzi, C., Molinero, D., Picco, N., Bellingeri, R., Alustiza, F., Barbeito, C., Vivas, A., and Romanini, M. C. (2015). Effect of Sildenafil on pre-eclampsia-like mouse model induced by L-name. Reprod. Domest. Anim. 50, 611–616.
Effect of Sildenafil on pre-eclampsia-like mouse model induced by L-name.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1SrsbvM&md5=83d9e42d969be857937be8de596f62b7CAS | 25959785PubMed |

Nardozza, L. M., Araujo Junior, E., Barbosa, M. M., Caetano, A. C., Lee, D. J., and Moron, A. F. (2012). Fetal growth restriction: current knowledge to the general Obs/Gyn. Arch. Gynecol. Obstet. 286, 1–13.
Fetal growth restriction: current knowledge to the general Obs/Gyn.Crossref | GoogleScholarGoogle Scholar | 22526452PubMed |

Panda, S., Das, A., and Nowroz, H. M. (2014). Sildenafil citrate in fetal growth restriction. J. Reprod. Infertil. 15, 168–169.
| 25202677PubMed |

Pardi, G., Marconi, A. M., and Cetin, I. (2002). Placental–fetal interrelationship in IUGR fetuses – a review. Placenta 23, S136–S141.
Placental–fetal interrelationship in IUGR fetuses – a review.Crossref | GoogleScholarGoogle Scholar | 11978072PubMed |

Park, J. Y., Son, H., Kim, S. W., and Paick, J. S. (2004). Potentiation of apomorphine effect on sildenafil-induced penile erection in conscious rabbits. Asian J. Androl. 6, 205–209.
| 1:CAS:528:DC%2BD2cXovVyks7k%3D&md5=07a21adda9e2bc6d72c643e526e18a4dCAS | 15273868PubMed |

Pellicer, B., Herraiz, S., Cauli, O., Rodrigo, R., Asensi, M., Cortijo, J., Serra, V., Morcillo, E., Felipo, V., Simón, C., and Pellicer, A. (2011). Haemodynamic effects of long-term administration of sildenafil in normotensive pregnant and non-pregnant rats. BJOG 118, 615–623.
Haemodynamic effects of long-term administration of sildenafil in normotensive pregnant and non-pregnant rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslWit7o%3D&md5=528fd21eee2d0a405e8adbe44a88fcfcCAS | 21244618PubMed |

Polisca, A., Scotti, L., Orlandi, R., Brecchia, G., and Boiti, C. (2010). Doppler evaluation of maternal and fetal vessels during normal gestation in rabbits. Theriogenology 73, 358–366.
Doppler evaluation of maternal and fetal vessels during normal gestation in rabbits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2Fms1CgsA%3D%3D&md5=b592ff2c0f9cf51ab11cc95ceaeb1dd7CAS | 19969340PubMed |

Purcell, T. L., Given, R., Chwalisz, K., and Garfield, R. E. (1999). Nitric oxide synthase distribution during implantation in the mouse. Mol. Hum. Reprod. 5, 467–475.
Nitric oxide synthase distribution during implantation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtl2hsLo%3D&md5=18edd4ad600613380a7b04a12d02db33CAS | 10338370PubMed |

Püschel, B., Daniel, N., Bitzer, E., Blum, M., Renard, J. P., and Viebahn, C. (2010). The rabbit (Oryctolagus cuniculus): a model for mammalian reproduction and early embryology. Cold Spring Harb. Protoc , .
The rabbit (Oryctolagus cuniculus): a model for mammalian reproduction and early embryology.Crossref | GoogleScholarGoogle Scholar | 20150115PubMed |

Pyriochou, A., Zhou, Z., Koika, V., Petrou, C., Cordopatis, P., Sessa, W. C., and Papapetropoulos, A. (2007). The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J. Cell. Physiol. 211, 197–204.
The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12jtb8%3D&md5=9ee0ccefa4ce77e353eab4fd4dbdef1aCAS | 17226792PubMed |

Ramesar, S. V., Mackraj, I., Gathiram, P., and Moodley, J. (2010). Sildenafil citrate improves fetal outcomes in pregnant, L-NAME-treated, Sprague–Dawley rats. Eur. J. Obstet. Gynecol. Reprod. Biol. 149, 22–26.
Sildenafil citrate improves fetal outcomes in pregnant, L-NAME-treated, Sprague–Dawley rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGitrk%3D&md5=4aed2afaadf8751c4b3d9f505483734fCAS | 20034724PubMed |

Rebollar, P. G., Dal Bosco, A., Millán, P., Cardinali, R., Brecchia, G., Sylla, L., Lorenzo, P. L., and Castellini, C. (2012). Ovulating induction methods in rabbit does: the pituitary and ovarian responses. Theriogenology 77, 292–298.
Ovulating induction methods in rabbit does: the pituitary and ovarian responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Squw%3D%3D&md5=c0c419150062f12bdf5c91358558db85CAS | 21958641PubMed |

Reynolds, S. R. (1946). The relation of hydrostatic conditions in the uterus to the size and shape of the conceptus during pregnancy; a concept of uterine accommodation. Anat. Rec. 95, 283–296.
The relation of hydrostatic conditions in the uterus to the size and shape of the conceptus during pregnancy; a concept of uterine accommodation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaH28%2FhsVShtw%3D%3D&md5=b833a8d2243e5d45d55d177d4280f2e7CAS | 20995920PubMed |

Ross, M. G., and Desai, M. (2013). Developmental programming of offspring obesity, adipogenesis and appetite. Clin. Obstet. Gynecol. 56, 529–536.
Developmental programming of offspring obesity, adipogenesis and appetite.Crossref | GoogleScholarGoogle Scholar | 23751877PubMed |

Samuel, C. A., Jack, P. M., and Nathanielsz, P. W. (1975). Ultrastructural studies of the rabbit placenta in the last third of gestation. J. Reprod. Fertil. 45, 9–14.
Ultrastructural studies of the rabbit placenta in the last third of gestation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE28%2FntFOqtA%3D%3D&md5=b6d1708120a6ec68160deb664ae256d4CAS | 1238566PubMed |

Sánchez-Aparicio, P., Mota-Rojas, D., Nava-Ocampo, A. A., Trujillo-Ortega, M. E., Alfaro-Rodríguez, A., Arch, E., and Alonso-Spilsbury, M. (2008). Effects of sildenafil on the fetal growth of guinea pigs and their ability to survive induced intrapartum asphyxia. Am. J. Obstet. Gynecol. 198, 127.e1–127.e6.
Effects of sildenafil on the fetal growth of guinea pigs and their ability to survive induced intrapartum asphyxia.Crossref | GoogleScholarGoogle Scholar |

Sankaran, S., and Kyle, P. M. (2009). Aetiology and pathogenesis of IUGR. Best Pract. Res. Clin. Obstet. Gynaecol. 23, 765–777.
Aetiology and pathogenesis of IUGR.Crossref | GoogleScholarGoogle Scholar | 19666240PubMed |

Satterfield, M. C., Bazer, F. W., Spencer, T. E., and Wu, G. (2010). Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J. Nutr. 140, 251–258.
Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSlsLo%3D&md5=7399e572f8e8d2d3d5354e228daaee35CAS | 20018809PubMed |

Schroder, H. J. (2003). Models of fetal growth restriction. Eur. J. Obstet. Gynecol. Reprod. Biol. 110, S29–S39.
Models of fetal growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVyhs7w%3D&md5=1d6526ad630e24d4272ab605911721c1CAS | 12965088PubMed |

Serrano, N. C., Casas, J. P., Diaz, L. A., Paez, C., Mesa, C. M., Cifuentes, R., Monterrosa, A., Bautista, A., Hawe, E., Hingorani, A. D., Vallance, P., and Lopez-Jaramillo, P. (2004). Endothelial NO synthase genotype and risk of pre-eclampsia: a multicentre case-control study. Hypertension 44, 702–707.
Endothelial NO synthase genotype and risk of pre-eclampsia: a multicentre case-control study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCgsbs%3D&md5=e8641d50e24049b470ad718a4b2dc46aCAS | 15364897PubMed |

Stanley, J. L., Andersson, I. J., Poudel, R., Rueda-Clausen, C. F., Sibley, C. P., Davidge, S. T., and Baker, P. N. (2012). Sildenafil citrate rescues fetal growth in the catechol-o-methyl transferase knockout mouse model. Hypertension 59, 1021–1028.
Sildenafil citrate rescues fetal growth in the catechol-o-methyl transferase knockout mouse model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls12ks74%3D&md5=b6cdec34583b950f962c0a64d73383a9CAS | 22392899PubMed |

Sun, X., Wang, K., Wang, W., and Li, B. (2014). Clinical study on sildenafil in treatment of pregnant women with pulmonary arterial hypertension. Zhonghua Fu Chan Ke Za Zhi 49, 414–418.
| 25169631PubMed |

Tchirikov, M., Kertschanska, S., Sturenberg, H. J., and Schroder, H. J. (2002). Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta 23, S153–S158.
Liver blood perfusion as a possible instrument for fetal growth regulation.Crossref | GoogleScholarGoogle Scholar | 11978076PubMed |

Trapani, A. J., Goncalves, L. F., Trapani, T. F., Franco, M. J., Galluzzo, R. N., and Pires, M. M. (2015). Comparison between transdermal nitroglycerin and sildenafil citrate in intrauterine growth restriction: effect on uterine, umbilical and fetal middle cerebral artery pulsatility index. Ultrasound Obstet. Gynecol. , .
Comparison between transdermal nitroglycerin and sildenafil citrate in intrauterine growth restriction: effect on uterine, umbilical and fetal middle cerebral artery pulsatility index.Crossref | GoogleScholarGoogle Scholar | 26279411PubMed |

Wells, J. C. (2011). The thrifty phenotype: an adaptation in growth or metabolism? Am. J. Hum. Biol. 23, 65–75.
The thrifty phenotype: an adaptation in growth or metabolism?Crossref | GoogleScholarGoogle Scholar | 21082685PubMed |

Zhang, R., Wang, Y., Zhang, L., Zhang, Z., Tsang, W., Lu, M., and Chopp, M. (2002). Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 33, 2675–2680.
Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFWlsbo%3D&md5=403fb0b0a9394107f5ab79155657861bCAS | 12411660PubMed |