Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Aquaglyceroporins 3 and 7 in bull spermatozoa: identification, localisation and their relationship with sperm cryotolerance

Noelia Prieto-Martínez A F , Roser Morató A , Rodrigo Muiño B , Carlos O. Hidalgo C , Joan E. Rodríguez-Gil D , Sergi Bonet A and Marc Yeste E
+ Author Affiliations
- Author Affiliations

A Department of Biology, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany 65, Campus Montilivi, E-17071 Girona, Spain.

B Department of Animal Pathology, University of Santiago de Compostela, Avda. Carballo Calero s/n, E-27002 Lugo, Spain.

C Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), Camin de Rioseco 1225, La Olla, Deva, E-33394 Gijón, Spain.

D Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Building V, Campus Bellaterra s/n, E-08193 Bellaterra (Barcelona), Spain.

E Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

F Corresponding author. Email: noelia.prieto@udg.edu

Reproduction, Fertility and Development 29(6) 1249-1259 https://doi.org/10.1071/RD16077
Submitted: 28 July 2015  Accepted: 31 March 2016   Published: 25 May 2016

Abstract

The present study aimed to determine the localisation of aquaglyceroporins 3 (AQP3) and 7 (AQP7) in bull spermatozoa and their relationship with the sperm cell’s resilience to withstand cryopreservation (i.e. cryotolerance). A total of 18 bull ejaculates were cryopreserved and their sperm quality analysed before and after freeze–thawing. The presence and localisation of AQP3 and AQP7 was determined through immunoblotting and immunocytochemistry. AQP3 was found in the mid-piece and AQP7 in the mid-piece and post-acrosomal region of bull spermatozoa. Immunoblotting showed specific signal bands at 30 and 60 kDa for AQP3 and at 25 kDa for AQP7. Neither the relative abundance of AQP3 and AQP7 nor their localisation patterns was altered by cryopreservation but individual differences between bull ejaculates were found in immunoblots. In order to determine whether these individual differences were related to sperm cryotolerance, bull ejaculates were classified as having good (GFE) or poor freezability (PFE) on the basis of their sperm quality after thawing. While the relative abundance of AQP3 before cryopreservation did not differ between ejaculates with GFE and PFE, the abundance of AQP7 was higher in GFE than in PFE ejaculates. This finding was further confirmed through principal component and linear regression analyses. In conclusion, the relative abundance of AQP7 in fresh semen may be used as a marker to predict bull sperm cryotolerance.

Additional keywords: AQP3, AQP7, bovine species, immunoblotting, immunocytochemistry, sperm cryopreservation.


References

Bailey, J. L., Bilodeau, J. F., and Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J. Androl. 21, 1–7.
| 1:STN:280:DC%2BD3c7jtl2ktg%3D%3D&md5=5c0560e354465ee5bf9ebf491488228dCAS | 10670514PubMed |

Barcroft, L. C., Offenberg, H., Thomsen, P., and Watson, A. J. (2003). Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev. Biol. 256, 342–354.
Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFWmsbw%3D&md5=e2c743da3f6267e1c2b4046f98ec2152CAS | 12679107PubMed |

Camargo, L. S., Boite, M. C., Wohlres-Viana, S., Mota, G. B., Serapiao, R. V., Sa, W. F., Viana, J. H., and Nogueira, L. A. (2011). Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology 63, 256–262.
Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCqsLfP&md5=e6557b4804b1664a3ef0873419035839CAS | 21985766PubMed |

Chauvigné, F., Lubzens, E., and Cerdà, J. (2011). Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol. 11, 34.
Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol.Crossref | GoogleScholarGoogle Scholar | 21477270PubMed |

Chen, Q., and Duan, E. K. (2011). Aquaporins in sperm osmoadaptation: an emergent role for volume regulation. Acta Pharmacol. Sin. 32, 721–724.
Aquaporins in sperm osmoadaptation: an emergent role for volume regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyju7k%3D&md5=ddc09a4f218b560c910f4caaee0425abCAS | 21552294PubMed |

Chen, Q., Peng, H., Lei, L., Zhang, Y., Kuang, H., Cao, Y., Shi, Q. X., Ma, T., and Duan, E. (2011). Aquaporin 3 is a sperm water channel essential for postcopulatory sperm osmo-adaptation and migration. Cell Res. 21, 922–933.
Aquaporin 3 is a sperm water channel essential for postcopulatory sperm osmo-adaptation and migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgur4%3D&md5=ef2f0f3662bba376683c1700b075e842CAS | 21135872PubMed |

Comizzoli, P., and Wildt, D. E. (2014). Mammalian fertility preservation through cryobiology: value of classical comparative studies and the need for new preservation options. Reprod. Fertil. Dev. 26, 91–98.
Mammalian fertility preservation through cryobiology: value of classical comparative studies and the need for new preservation options.Crossref | GoogleScholarGoogle Scholar |

Curry, M. R. (2000). Cryopreservation of semen from domestic livestock. Rev. Reprod. 5, 46–52.
Cryopreservation of semen from domestic livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyitg%3D%3D&md5=ec11d0b6a7d2690bd515e74431253242CAS | 10711735PubMed |

Daigneault, B. W., McNamara, K. A., Purdy, P. H., Krisher, R. L., Knox, R. V., Rodriguez-Zas, S. L., and Miller, D. J. (2015). Enhanced fertility prediction of cryopreserved boar spermatozoa using novel sperm function assessment. Andrology 3, 558–568.
Enhanced fertility prediction of cryopreserved boar spermatozoa using novel sperm function assessment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MjotFCmuw%3D%3D&md5=a2f5ba5f2678c31c09ca9769dfbf00f3CAS | 25914302PubMed |

Edashige, K., Yamaji, Y., Kleinhans, F. W., and Kasai, M. (2003). Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 68, 87–94.
Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2j&md5=adc9a28284e6ba52bdf7379c198da3c5CAS | 12493699PubMed |

Filho, A. C., Brezinsky, R. M., Youngblood, R. C., Da Silva, L. D., Willard, S. T., Ryan, P. L., and Feugang, J. M. (2014). Differential expression of aquaporins and spermadhesins in frozen–thawed ‘good freezer’ and ‘poor freezer’ boar spermatozoa. Reprod. Fertil. Dev. 26, 141–142.
Differential expression of aquaporins and spermadhesins in frozen–thawed ‘good freezer’ and ‘poor freezer’ boar spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Foote, R. H. (2002). The history of artificial insemination: Selected notes and notables. J. Anim. Sci. 80, 1–10.

Hagedorn, M., Lance, S. L., Fonseca, D. M., Kleinhans, F. W., Artimov, D., Fleischer, R., Hoque, A. T., Hamilton, M. B., and Pukazhenthi, B. S. (2002). Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation. Biol. Reprod. 67, 961–966.
Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsV2jtr0%3D&md5=c239c74bbb88eaf5ffc142879cb11402CAS | 12193408PubMed |

Hammerstedt, R. H., Graham, J. K., and Nolan, J. P. (1990). Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl. 11, 73–88.
| 1:CAS:528:DyaK3cXhtlKgs7c%3D&md5=839d449ae799d6ef7b2c181550b6673aCAS | 2179184PubMed |

Hoffmann, N., Oldenhof, H., Morandini, C., Rohn, K., and Sieme, H. (2011). Optimal concentrations of cryoprotective agents for semen from stallions that are classified ‘good’ and ‘poor’ for freezing. Anim. Reprod. Sci. 125, 112–118.
Optimal concentrations of cryoprotective agents for semen from stallions that are classified ‘good’ and ‘poor’ for freezing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrtb4%3D&md5=c879f4a32b28f64d70396518b3055709CAS | 21470802PubMed |

Holt, W. V. (2000). Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 62, 3–22.
Basic aspects of frozen storage of semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Kgsbo%3D&md5=325bff0cf3993895fa2e2e3ea3a54e66CAS | 10924818PubMed |

Huang, H. F., He, R. H., Sun, C. C., Zhang, Y., Meng, Q. X., and Ma, Y. Y. (2006). Function of aquaporins in female and male reproductive systems. Hum. Reprod. Update 12, 785–795.
Function of aquaporins in female and male reproductive systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeisbzL&md5=7b4754a315909b5335475dd381ff2f6cCAS | 16840793PubMed |

Ito, J., Kawabe, M., Ochiai, H., Suzukamo, C., Harada, M., Mitsugi, Y., Seita, Y., and Kashiwazaki, N. (2008). Expression and immunodetection of aquaporin 1 (AQP1) in canine spermatozoa. Cryobiology 57, 312–314.
Expression and immunodetection of aquaporin 1 (AQP1) in canine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChtbrE&md5=5d10ef0b6b624cc1007ee9562a06aa23CAS | 18926811PubMed |

Johnson, L. A., Weitze, K. F., Fiser, P., and Maxwell, W. M. (2000). Storage of boar semen. Anim. Reprod. Sci. 62, 143–172.
Storage of boar semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Kgsbc%3D&md5=c7a7e93123fa559533ce3650cc83c6e3CAS | 10924823PubMed |

Knepper, M. A., and Nielsen, S. (2004). Peter Agre, 2003 Nobel Prize winner in chemistry. J. Am. Soc. Nephrol. 15, 1093–1095.
Peter Agre, 2003 Nobel Prize winner in chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFWrsLw%3D&md5=a44096f69a10a13fd81b0c45960aabeaCAS | 15034115PubMed |

Knox, R., Levis, D., Safranski, T., and Singleton, W. (2008). An update on North American boar stud practices. Theriogenology 70, 1202–1208.
An update on North American boar stud practices.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnmvVOjtg%3D%3D&md5=01c2a83bf8b2487330b93f8ab892c2b1CAS | 18656252PubMed |

Kopeika, J., Thornhill, A., and Khalaf, Y. (2015). The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 21, 209–227.
The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence.Crossref | GoogleScholarGoogle Scholar | 25519143PubMed |

Lecewicz, M., Hering, D. M., Kamiński, S., Majewska, A., and Kordan, W. (2015). Selected qualitative and biochemical parameters of cryopreserved semen of Holstein-Friesian (HF) AI bulls. Pol. J. Vet. Sci. 18, 237–239.
Selected qualitative and biochemical parameters of cryopreserved semen of Holstein-Friesian (HF) AI bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKntLjJ&md5=a85c8cbf0256d089c3cdcbfdee7ac963CAS | 25928933PubMed |

Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J., Gasparetto, M., Goldberg, M., Goralczyk, E. M., Hyun, B., Jansen, K., Kollmann, T., Kong, M., Leif, R., McWeeney, S., Moloshok, T. D., Moore, W., Nolan, G., Nolan, J., Nikolich-Zugich, J., Parrish, D., Purcell, B., Qian, Y., Selvaraj, B., Smith, C., Tchuvatkina, O., Wertheimer, A., Wilkinson, P., Wilson, C., Wood, J., Zigon, R., Scheuermann, R. H., and Brinkman, R. R. (2008). MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73A, 926–930.
MIFlowCyt: the minimum information about a flow cytometry experiment.Crossref | GoogleScholarGoogle Scholar |

Morató, R., Chauvigné, F., Novo, S., Bonet, S., and Cerdà, J. (2014). Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels. Mol. Reprod. Dev. 81, 450–461.
Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels.Crossref | GoogleScholarGoogle Scholar | 24488947PubMed |

Moretti, E., Terzuoli, G., Mazzi, L., Iacoponi, F., and Collodel, G. (2012). Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Syst. Biol. Reprod. Med. 58, 129–135.
Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFynsL8%3D&md5=2fcee2cc91a4874d6645d3c2069ff07cCAS | 22206455PubMed |

Muiño, R., Tamargo, C., Hidalgo, C. O., and Peña, A. I. (2008). Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation. Anim. Reprod. Sci. 109, 27–39.
Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation.Crossref | GoogleScholarGoogle Scholar | 18036750PubMed |

Noiles, E. E., Mazur, P., Watson, P. F., Kleinhans, F. W., and Crister, J. K. (1993). Determination of water permeability for human spermatozoa and its activation energy. Biol. Reprod. 48, 99–109.
Determination of water permeability for human spermatozoa and its activation energy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjs1Klsg%3D%3D&md5=0aebc46aa5aaae6b863278181e45a703CAS | 8418921PubMed |

Perez Di Giorgio, J., Soto, G., Alleva, K., Jozefkowicz, C., Amodeo, G., Prometeo, J., and Ayub, N. (2014). Prediction of aquaporin function by integrating evolutionary and functional analyses. J. Membr. Biol. 247, 107–125.
Prediction of aquaporin function by integrating evolutionary and functional analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKns7bI&md5=863ccf442d2d034cc039243a965016a5CAS | 24292667PubMed |

Petrunkina, A. M., Waberski, D., Bollwein, H., and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gsVejtQ%3D%3D&md5=c7a267db2c912c696e2bd39b1a8ba246CAS | 20171719PubMed |

Prieto-Martínez, N., Vilagran, I., Morató, R., Rodríguez-Gil, J. E., Yeste, M., and Bonet, S. (2014). Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality. Reprod. Fertil. Dev. , .
Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality.Crossref | GoogleScholarGoogle Scholar |

Prieto-Martínez, N., Morató, R., Vilagran, I., Rodríguez-Gil, J. E., Bonet, S., and Yeste, M. (2015). Aquaporins in boar spermatozoa. Part II: detection and localisation of aquaglyceroporin 3. Reprod. Fertil. Dev , .
Aquaporins in boar spermatozoa. Part II: detection and localisation of aquaglyceroporin 3.Crossref | GoogleScholarGoogle Scholar | 26677911PubMed |

Rath, D., Bathgate, R., Rodriguez-Martinez, H., Roca, J., Strzezek, J., and Waberski, D. (2009). Recent advances in boar semen cryopreservation. Soc. Reprod. Fertil. Suppl. 66, 51–66.
| 1:STN:280:DC%2BD1MjgvFanug%3D%3D&md5=b032ffea79436e3e000c1dd9151887eeCAS | 19848266PubMed |

Rota, A., Furzi, C., Panzani, D., and Camilo, F. (2004). Studies on motility and fertility of cooled stallion spermatozoa. Reprod. Domest. Anim. 39, 103–109.
Studies on motility and fertility of cooled stallion spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7ntlClsQ%3D%3D&md5=6fd1d34f88d5f9b08fad08da842a51f7CAS | 15065992PubMed |

Saito, K., Kageyama, Y., Okada, Y., Kawakami, S., Kihara, K., Ishibashi, K., and Sasaki, S. (2004). Localisation of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality. J. Urol. 172, 2073–2076.
Localisation of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps12js7o%3D&md5=fefe778f56a486b66a03d05faff6bdb5CAS | 15540792PubMed |

Seki, S., Kouya, T., Hara, T., Valdez, D. M., Jin, B., Kasai, M., and Edashige, K. (2007). Exogenous expression of rat aquaporin-3 enhances permeability to water and cryoprotectants of immature oocytes in the zebrafish (Danio rerio). J. Reprod. Dev. 53, 597–604.
Exogenous expression of rat aquaporin-3 enhances permeability to water and cryoprotectants of immature oocytes in the zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVylsLg%3D&md5=c71ab75a418ebf3a69ad503c53057009CAS | 17325454PubMed |

Seki, S., Edashige, K., Wada, S., and Mazur, P. (2011). Effect of the expression of aquaporins 1 and 3 in mouse oocytes and compacted eight-cell embryos on the nucleation temperature for intracellular ice formation. Reproduction 142, 505–515.
Effect of the expression of aquaporins 1 and 3 in mouse oocytes and compacted eight-cell embryos on the nucleation temperature for intracellular ice formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyitb%2FP&md5=c81eb9cd31f1c9d6a5095799dab37750CAS | 21734033PubMed |

Sidel, V. W., and Salomon, A. K. (1957). Entrance of water into human red blood cells under osmotic pressure gradient. J. Gen. Physiol. 41, 243–257.
Entrance of water into human red blood cells under osmotic pressure gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXjtV2ksA%3D%3D&md5=31241e38b066e4ffc36eae272eb3b7caCAS | 13475689PubMed |

Sieme, H., and Oldenhof, H. (2015). Cryopreservation of semen from domestic livestock. Methods Mol. Biol. 1257, 277–287.
Cryopreservation of semen from domestic livestock.Crossref | GoogleScholarGoogle Scholar | 25428010PubMed |

Standerholen, F. B., Waterhouse, K. E., Larsgard, A. G., Garmo, R. T., Myromslein, F. D., Sundae, J., Ropstad, E., Klinkeberg, G., and Kommisrud, E. (2015). Use of immobilized cryopreserved bovine semen in a blind artificial insemination trial. Theriogenology 84, 413–420.
Use of immobilized cryopreserved bovine semen in a blind artificial insemination trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1yjtLw%3D&md5=5ea05c9a4a3b3c2c1a1519c8f5491bcaCAS | 25922170PubMed |

Tan, Y. J., Xiong, Y., Ding, G. L., Zhang, D., Meng, Y., Huang, H. F., and Sheng, J. Z. (2013). Cryoprotectants up-regulate expression of mouse oocyte AQP7, which facilitates water diffusion during cryopreservation. Fertil. Steril. 99, 1428–1435.
Cryoprotectants up-regulate expression of mouse oocyte AQP7, which facilitates water diffusion during cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslCktw%3D%3D&md5=4382bf4dc5d4b87c724740830bf8ae1dCAS | 23290745PubMed |

Tan, Y. J., Zhang, X. Y., Ding, G. L., Li, R., Wang, L., Jin, L., Lin, X. H., Gao, L., Sheng, J. Z., and Huang, H. F. (2015). Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation. Sci. Rep. 5, 17741.
Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGmt7zL&md5=102dad5f0343bbf7007cfe2339c5c780CAS | 26634435PubMed |

Valdez, D. M., Hara, T., Miyamoto, A., Seki, S., Jin, B., Kasai, M., and Edashige, K. (2006). Expression of aquaporin-3 improves the permeability to water and cryoprotectants of immature oocytes in the medaka (Oryzias latipes). Cryobiology 53, 160–168.
Expression of aquaporin-3 improves the permeability to water and cryoprotectants of immature oocytes in the medaka (Oryzias latipes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1OmsLw%3D&md5=224c368a07a7487e892cce1ed2069a86CAS | 16797525PubMed |

Vilagran, I., Yeste, M., Sancho, S., Castillo, J., Oliva, R., and Bonet, S. (2015). Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology 3, 345–356.
Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgsbg%3D&md5=f5c311c5d08d6971264a622e232a7c93CAS | 25678437PubMed |

Woods, E. J., Benson, J. D., Agca, Y., and Critser, J. K. (2004). Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.
Fundamental cryobiology of reproductive cells and tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1amurw%3D&md5=5318c52256e88e681eb505c93c0e0db0CAS | 15094091PubMed |

Xiong, Y., Tan, Y. J., Xiong, Y. M., Huang, Y. T., Hu, X. L., Lu, Y. C., Ye, Y. H., Wang, T. T., Zhang, D., Jin, F., Huang, H. F., and Sheng, J. Z. (2013). Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development. Cell. Physiol. Biochem. 31, 649–658.
Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12hur7F&md5=b32366ce6a911e3ca61b547f10b3c45dCAS | 23652731PubMed |

Yamaji, Y., Valdez, D. M., Seki, S., Yazawa, K., Urakawa, C., Jin, B., Kasai, M., Kleinhans, F. W., and Edashige, K. (2006). Cryoprotectant permeability of aquaporin-3 expressed in Xenopus oocytes. Cryobiology 53, 258–267.
Cryoprotectant permeability of aquaporin-3 expressed in Xenopus oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Omsb8%3D&md5=c96398e6af0823b2dd9327097ba7d2ddCAS | 16942765PubMed |

Yeste, M. (2015). Recent advances in boar sperm cryopreservation: state of the art and current perspectives. Reprod. Domest. Anim. 50, 71–79.
Recent advances in boar sperm cryopreservation: state of the art and current perspectives.Crossref | GoogleScholarGoogle Scholar | 26174922PubMed |

Yeste, M. (2016). Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85, 47–64.
Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSjsb%2FN&md5=6ca843975294a5aa0bc8a8ab035f128bCAS | 26506124PubMed |

Yeste, M., Briz, M., Pinart, E., Sancho, S., Garcia-Gil, N., Badia, E., Bassols, J., Pruneda, A., Bussalleu, E., Casas, I., and Bonet, S. (2008). Boar spermatozoa and prostaglandin F2a. Quality of boar sperm after the addition of prostaglandin F2a to the short-term extender over cooling time. Anim. Reprod. Sci. 108, 180–195.
Boar spermatozoa and prostaglandin F2a. Quality of boar sperm after the addition of prostaglandin F2a to the short-term extender over cooling time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVejtLnP&md5=6c297ec7f7830db415e4efa32211e89aCAS | 17897798PubMed |

Yeste, M., Briz, M., Pinart, E., Sancho, S., Bussalleu, E., and Bonet, S. (2010). The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Anim. Reprod. Sci. 119, 265–274.
The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVait74%3D&md5=bf749ed854ea33f73e793531d3882c79CAS | 20227204PubMed |

Yeste, M., Estrada, E., Casas, I., Bonet, S., and Rodríguez-Gil, J. E. (2013a). Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels. Theriogenology 79, 929–939.
Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVGgtrY%3D&md5=70ae8a5c0daceb3f4864c7f7ece983c1CAS | 23398739PubMed |

Yeste, M., Flores, E., Estrada, E., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2013b). Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds. Reprod. Fertil. Dev. 25, 1036–1050.
Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gms7rM&md5=272c6f39f04a58a83d6b498aaee40ee9CAS | 23089308PubMed |

Yeste, M., Estrada, E., Pinart, E., Bonet, S., Miró, J., and Rodríguez-Gil, J. E. (2014a). The improving effect of reduced glutathione on boar sperm cryotolerance is related with the intrinsic ejaculate freezability. Cryobiology 68, 251–261.
The improving effect of reduced glutathione on boar sperm cryotolerance is related with the intrinsic ejaculate freezability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFCgs7s%3D&md5=61abdfad0a6f77ecc2975a7a37435d79CAS | 24530509PubMed |

Yeste, M., Estrada, E., Rivera Del Álamo, M. M., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2014b). The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 17°C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS One , .
The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 17°C is concomitant with a higher cryotolerance of boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 24603527PubMed |

Yeste, M., Estrada, E., Rocha, L. G., Marín, H., Rodríguez-Gil, J. E., and Miró, J. (2015). Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 3, 395–407.
Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgtL8%3D&md5=dd172247e78ba687efc42c07323d374aCAS | 25294093PubMed |

Yeung, C. H., and Cooper, T. G. (2010). Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 139, 209–216.
Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWlsw%3D%3D&md5=e199b91f4232dc8505975fd36fedace6CAS | 19812234PubMed |

Yeung, C. H., Callies, C., Tüttelmann, F., Kliesch, S., and Cooper, T. G. (2010). Aquaporins in the human testis and spermatozoa – identification, involvement in sperm volume regulation and clinical relevance. Int. J. Androl. 33, 629–641.
| 1:CAS:528:DC%2BC3cXhtVOntbvO&md5=e15793925fa7d1044a1a2f8c203db100CAS | 19840149PubMed |

Yoon, S. J., Kwon, W. S., Rahman, M. S., Lee, J. S., and Pang, M. G. (2015). A novel approach to identifying physical markers of cryo-damage in bull spermatozoa. PLoS One , .
A novel approach to identifying physical markers of cryo-damage in bull spermatozoa.Crossref | GoogleScholarGoogle Scholar | 26575995PubMed |

Zhang, B. R., Buhr, M., Kroetschd, T., and Leibo, S. P. (2001). Glycine betaine improves survival of fresh bovine spermatozoa. Reprod. Fertil. Dev. 13, 187–192.
Glycine betaine improves survival of fresh bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVWltr8%3D&md5=f7963664c412f0ce8f5220779279ee45CAS | 11720136PubMed |